Adatbazis targyra jegyzetek

Tartalomjegyzék

1. Kreditumok

2. Adatbazis kezeldk felépitése

3. Alapfogalmak

4. Adatbézis kezeld rendszerek (DBMS) Database Management System

3. Programozd6i/ felhasznaloi szemlélet
6. DBM jarulékos feladatai

7. Adatbazis-kezel6k felépitése

8. A fogalmi (logikai)_adatbdzis és ER modellek (vagy EK modellek)

9. Adatmodellezés
10. Reldcids sémakra példa

11. ER modellek a valos életben

12. Kapcsolatok funkcionalitdsa (/kardinalitasa)

13. X is a Y kapcsolat

14. Gyenge egyed halmaz

15. Adatmodellek
16. A relacios adatmodell, V2

17. Muveletek az adatokon

18. (EXTRA!)_Objektumorientalt adatmodell
19. (EXTRA!) Hierarchikus adatmodell

20. (EXTRA!)_Halés adatmodell

21. (EXTRA!) Deduktiv adatmodell

22. (EXTRA!) Fuzzy adatmodell

23. Fuzzyness - hoszabb felvezetés

24. Igények és motivaciok

25. Fuzzy logika és kozelités
26. Illesztések
27. ER modellezés gyakorlati anyag
28. Filmtar feladat
29. Iskola feladatra visszatériink
30. Reldcids adatmodell part 2: Szarmaztatott miiveletek

31. A Reldcioalgebra alkalmazasa

32. Lekérdezések
33. 1. Labor 6sszefoglald
34. Az Oracle adatbaziskezel torténete

35. Az Oracle felépitése

36. Logikai felépités

37. Adattipusokrol roviden

38. Fizikai felépités
39. Reldcids adatbazisok kalkulus alapu lekérdezése

40. Sorkalkulus

41. Formuldk logikai meghatirozasa

42. Adatbazis nézetének kibovitése
43. Fizikai adatszervezés
44. Az indexelésrol

45. Oszlopkalkulus

46. 2. Labor fontosabb fogalmak
47. Fizikai adatszervezés 2.

48. ISAM-al beszuras

49. Torlés ISAM-al

50. Modositas ISAM-al

51. Keresés ISAM-nal

52. Siirt indexek

53. Relacios lekérdezések optimalizalasa
54. Heurisztikus szabaly alapu optimalizalass
55. Koltségalapt optimalizalas

56. Valtoz6 hosszasagu rekordok kezelése

57. Szimbolum katalogus:
58. Koltség meghatdrozasa
59. Operatorok, miiveletek kdltsége

60. Kifejezésértékelések tovabbi modjai

61. Koltségalapt optimalizdcios implementacids
62. Join algoritmusok

63. SQL-re példak
64. SQL clause magyardzatok

65. Fizikai adatszervezés - feladatok

66. '"EDDIG TART A ZARTHELYI ANYAGA!!

67.

68. Kényszerek

70. Reldcios sématervezés normalizaldsa (Ismeétlés)

71. Redundancia

72. Update anomalia
73. Insert anomalia

74. Delete anomalia
75. Megoldasok ezekre
76. Funkcionalis fiiggés

77. Normal formak

78. Armstrong axiomak

79. Tranzakciokezelés
80. Konkurens mitkddések
81. Elveszet mddositas (Lost update)
82. Nem megismételhetd olvasds (Non repeatable read)

83. Fantom olvasds (Phantom read)

84. Piszkos adat olvasdsa (Dirty data read)
85. Minimum elvarasok a DBMS-el
86. Zarak hasznalata

87. Tranzakcidokezelés - tobb felhasznalok

88. Az ACID betartdsara vannak algoritmusok, protokollok, de nem minden

algoritmus old meg minden problémat. Van, ami csak 1-et, mds 2-t biztosit.

89. Zarak problémai

90. Zarmenedzser

91. Holtpontok elleni védekezeés
92. Utemezések jellemzése

93. Izolécids elv

94. 2 Fazisu zar (2 Phase Lock)
95. RLOCK-WILOCK model

96. Az adategységek hierarchikus viszonyban vannak

97. Fa protokol

98. Figyelmeztetd protokol

99. Mit lehet kezdeni a tranzakciok id6 elétti befejezésével?

100. Médiahiba
101. Tranzakcidhiba
102. Rendszerhibak kezelése

103. Verziokezeléses idébelyegek (MVCCO)

Kreditumok

Felhasznalt irodalom:
e Gajdos Sandor — Adatbazisok (2019)
e Gajdos Sandor — Eldadasok

e https://vik.wiki/images/c/cb/Adatbazisok jegyzet 2022 v2.pdf

e Wikipédia az adatbazisokrdl €s adatmodellekrol

e https://vik.wiki/images/c/cf/Lagyszamitas_jegyzet 2011 fuzzy.pdf

e Labjegyzékek: Dragonyos

Koszonet a diagramok ¢€s kiegészitékért Toma066-nak.

Adatbazis kezelok felépitése

Alapfogalmak

Definicio: Adat: Nem értelmezett, de értelmezhetd darabja a valosagnak.

Példa: 21, nincs megmondva, hogy ez egy ¢életkor vagy, hogy milyen szamrendszerbe

kell értelmezni.

Definici6: Informdcio: Ertelmezett adat.

Példa: 21 életkor.

Definicio: Tudds: Kontextusba helyezett informacio.

PI1: Potencialis vasarlok a 42-es cipdméretre.
Definicio: metaadat: Adat adata. (vagy adatot leird informacio)

Definicié: Szintaxis: Adatok abrazoldsi modja.

https://vik.wiki/images/c/cb/Adatbazisok_jegyzet_2022_v2.pdf
https://vik.wiki/images/c/cf/Lagyszamitas_jegyzet_2011_fuzzy.pdf

Pl: a 30-at 10-es szamrendszerbe értjiik.

Definicio: Szemantika: Egy adat jelentése.

Pl: a 42 egy életkor.
Definicio: Strukturalt adat: Olyan adat, ahol a szintaxis megegyezik a szemantikaval.

Definicio: Strukturalis metaadat:

PI: adattipusok, oszlopnevek, tdblanevek, adatméretek.

Definicio: Szemantikus metaadat:

Pl: hozzarendelt értelem,

pl: egy adott tablanak milyen attriblitumai vannak, vagy pl a kapcsolatok kardinalitdsa

Definicio: Szemistrukturdlt adat: Olyan adat, ahol a szintaxis nem egyezik a

szemantikaval.

Pl: JSON, XML. Oke¢, ez semmit nem mond, ezt ugy kell érteni, hogy olyan adat,
amelyet elére meghatarozott formaban (pl. tdblazat, adatbazis mezdk) tarolunk, tehat

maga a szerkezete mar sokat "magyaraz" beldle.

Definicio: Nemstrukturalt adat: Nincs szemantika, igy nincs szerkezete sem.

PI: Bitstream, kép, vided. (Ezeknek is van de most hagyjuk)

Definicio: Séma: Adatbazis fogalmi vdza, mas néven struktirdja. Mas szoval: milyen

adatok milyen formdban tarolodnak az adatbazisban. Az lires halmaznak / adatbdzisnak

1S van sémaja.
Adatbazis kezel6 rendszerek (DBMS) Database Management System

Definicio: Adatbazis: A valos vilag részhalmazanak leirasahoz hasznalt adatok

Osszefliggd, rendezett halmaza.

Példa: Lehet az SQL is adatbazis, de definicid szerint az Excel is az.

Definicio: —: Kovetkezeés.
Definicio: Adatbazis-kezelo rendszer:

Definicio: Kiilso sema: A nézetekhez tartozo sémakat gyakran kiilsé sémanak (external

schema) is nevezik.
Definicio: Data Manipulation Language: kérések megfogalmazasa, értelmezése.

Definicio: Data Definition Language: megfogalmazhatjuk, hogy milyen adatokat

milyen forméaban tarolunk.

Definicio: Database manager: Ellatja forditott séma alapjan a lekérdezéseket,

adatvédelmet, szinkronizaciot €s az integritasra figyel.

Definicié: Sémafordité: Ertelmeti az adtabazis Data Definition Language leirasat és

kiilon forditja le.

Hardver-szoftver rendszer

1 vagy tobb személy szdmara

e Magas szinten - Felhasznal6 anélkiil tudja elvégezni a feladatait, hogy tudna a hattér
DBMS mikodéseket.

e [ehetové teszi az adatok olvasasat, modositasat.

Tulajdonsagok:
e Nagy adatmennyiség

e Gazdag struktura: Rekordok kozott logikai kapcsolat hozhat6 1étre, amit lehet arra is

hasznalni, hogy a miiveleteket felgyorsitsa.

e Hosszu életciklus:

P1: Népességi adatbazis, hosszu ideig fent kell maradni, sok technikai valtast tal kell
¢lnie.

Tarolas manapsag:

e Maignesszalag (inkabb mar nem)

e HDD

e SSD

Programozoi/ felhasznaloi szemlélet

Klasszikus adatbazis rendszerek 2 fazisa:
e majdani adatok tarolasi rendje ~ tdmogato: DDL3

o séma megteremtése

o adatai: technikai metaadatok, adatbazis kiilonosen védett részébe keriilnek.
o - elvesztésiik/sériilésiik miatt az adatbazis elérhetetlen lesz

e adatok tarolasa, lekérdezése ~ tamogatd: DML5

o Lekérdezések 6nalld programként, alkalmazasként is mikodnek
o specialis adatbazis-lekérdezd nyelven (pl. SQL) kérdéseket fogalmaz meg (valaki)

o Lekérdezés feldolgozo értelmezi, optimalizalds is sziikséges: egy esethez tobb ton

keresztiil is el tudunk jutni.
o adatbazis-kezel6 valaszol

o lekérdezés-feldolgoz6 alakitja értelmezhetd formaba a DB-manager szdmara —

ilyenkor optimalizal is.

Sémaleirds

Alkalmazas Felhasznaloi lekérdezés
/

A\
N7 7

Lekérdezésfeldolgozo

Semafordito
Adatbazis-
manager
Y
v
File-manager

DDL és DML gyakran egy egységes nyelvként dolgoznak: pl. SQL.
Allomanykezel6 biztositja a hozzaférést a fizikai adatbazishoz — + szoros kapcsolatban

az OS-szel.
DBM jarulékos feladatai

e Adatvédelem (privacy)

o Kiilonb6z6 hozzaférési mdédok vannak.

o Jelszohoz is kothetd a hozzaférés vagy célhardver is védheti az adatokat.
 integritas (integrity) (ellentmondasmentesség)

o olyan szolgaltatds, mely a DB adatainak helyességét ellendrzi a beszlras, torlés,

modositas kényesek a sikeres végrehatjast.
o DB logikai felépitése is segithet ezen

o tipusai:

= | Definicio: Formai ellendrzés: adott mezdben valdban az engedélyezett értek all-

c.

Pl: Ne hagyjunk 999-at az életkornal.

= | Definicio: Referencialis integritas: egyik helyrdl kiolvasott adatelemnek meg

kell egyeznie mas helyrdl kiolvasott adatelemmel.

Példa: Ha 2 ugyanolyan lekérdezést végrehajtottunk egy tablan, anélkiil, hogy

az modosult volna, azoknak ugyanazt az eredményt kell visszaadniuk.

= | Definicio: Strukturadlis integritas: Nem sériilt-e a feltételezés, amelyre az DB-t

¢épitettiik. Gyakori hiba: egyértelmiiség megsziinése.

Pl: Araboknal férfiaknal lehet tobb feleség is, mashol ez nem egyértelmi. Vagy

adatbaziskényszerek, mely miatt az adatok kapcsolatban vannak. Olykor ez

egyértelmi, olykor nem. Utdbbiak kozé tartoznak a fliggdségek, amikor egyes

adatbazisértékek meghataroznak mas értékeket.

e | Definicio: Adatbiztonsag (security): adatok védelme érdekében, hogy se
szoftveres/hardveres hiba esetén se vesszenek el: naplozas, rendszeres mentgs,

kettdzott adatallomany, elosztott mitkodés

e | Definicio: Szinkronitas (synchronization): mai DB-k méar tobbfelhasznalosak +

tranzakciokezelés:

o adatokon egyiddben végzett miiveletek ne tegyenek keresztbe egymasnak

o ez biztositja ezt pl. zarak (locks) segitségével
Adatbazis-kezelok felépitése

e Rétegmodell

o lényege: probléma tobb részre bontasa, részek épiiljenek egymasra, minél kisebb

feliileten érintkezzenek
o rétegek egymastdl fliggetleniil megvaltoztathatoak legyenek

o arétegek kozotti interface valtozatlan marad — adatfiiggetlenség

= | Definicio: Fizikai adatfiiggetlenseg (Eszkozfiiggetlenség): fizikai szinten véghez
vitt valtozasok nem ¢érintik a logikai DB-t, — az adathordoz¢ fizikailag

kicserélhetd (

Pl: fizikai meghibasodas, technikai fejloddés), anélkiil, hogy barmilyen valtozas
lenne a logikai részben. (Tehat nem latunk valtozast pl. a rendszer

teljesitokepességében.)

= | Definicio: Logikai adatfiiggetienség: logikai DB megvaltozasa nem jar nézetek

megvaltozadsaval — nem mindig teljesiil

o

Rétegmodellhez

példa: 3 rétegli modell: rétegek egymastol fiiggetleniil kiilon valtoztathatoak.
(Fizika, Logika, View)

o |Definicio: Fizikai adatbadzis: itt valosul meg az adatok fizikai tarolas,

Pl: adatstrukturdk, amelyekben megvalosul az adattarolds.

o |Definicio: Fogalmi adatbadzis (logikai): vald vilag egy darabjanak leképzése,

adatok értelmezése, ehhez tartozd séma: fogalmi séma.

o |Definicio: Néezet (View): felhasznald az adatbazisbol 1at, tobb felhasznalasi

lehetdség — tobb nézet, ehhez tartoz6 séma: kiilsé séma. Fontos, hogy ez csak

szarmaztatja az adatokat.
e Felhasznalotipusok

o |Definicio: Képzetlen felhasznalo: nem ért az adatbazisokhoz, se a nyelviikon.
o |Definicio: Alkalmazasprogramozo: felhasznaldi program irasa
o |Definicio: Adatbazis admin: jogosultsagok, mentes, visszaallitas

o |Definicio: DBMS tervezo/programozo: Specialista, tudja, hogyan kell

adatbazisrendszereket tervezni és csinalni.

Fogalmi adatbazis

Fizikai adatbazis

Az adatbaziskezeldk altalanos statikus 7 rétegli modellje (kornyezetét is figyelembe

véve):

Miikédtetd parancsok Rétegek:

Hattértar kezeles T

Halmazorientalt

interface k4
Héttértar kezelés 6.
ry
Rekordorientalt
interface ¥
Héttértar kezelés 3.
ry
Belsd rekord-
interface ¥
Héttértar kezelés 4
ry
Laporientalt
buffer-interiace w
- r r r 3-
Hattertar kezeles DEMS
ry
Elokkorientalt
file-interface v
- r r r DS
Hattertar kezeles 2.

Hattértar-
interface

Definicio: Reldcios sema: Egy értelmezés, amit egy objektumra rahtizva jelentést
kapunk.

PI: 100 bitre: Ember séma: 1. 20 bit ember ¢€letkora, 2. 80 bit pedig a neve.

Definicio: Adatbdzis séema: Ha egy adatbazis tobb relacios semat is tartalmaz, akkor a

relacios sémak 0sszességének neve adatbdzis séma.

A fogalmi (logikai) adatbazis és ER modellek
(vagy EK modellek)

Ismétlés: Az adatbazis rendszer jol strukturalt adat tarolasara alkalmas.

Arra szolgal, hogy a tudast le tudjuk képezni adattd, és azt masok minnél hatékonyabban

vissza tudjak tudassa alakitani.
(Tudas=>adat=>Tudas).

Adatmodellezés

Definicio: Adatmodell: Olyan formaélis rendszer, ami jellemzi az adatokat és relacidikat,

¢s definidl egy miivelethalmazt, amivel az adatokat elérni és mddositani lehet.

Definicié: Formalis: Egy objektum akkor formalis, ha annak a jellemzésére egy jol
meghatarozott szimbolumrendszert hasznalunk. +megmondjuk, hogy a szimbdolumok

mire valok a rendszeren beliil €s a rendszerben szabalyokat definidlunk, amiket a

miiveletekkel nem szegiink meg.

Egy formalis jeldlés rendszer: Entity-Relationship (ER vagy EK) modell.
A modell az adatokrdl igy kell kinéznie: (Ezeknek meg kell felelnie)

¢ Elemek tartds tarolasa,

o Jol struktaralt adatok tarolasara alkalmas,

e Halmazokat hasznalunk a modellben,

Ez egy ER modell, ha kiilonb6z6 kapcsolat-,tulajdonsag- és egyedhalmazunk van.

Definicio: Tulajdonsdg: lesz az az attriblitum, ami egy egyedet jol tud jellemezni és

egyediséget ad neki.

Pl: Adbdazonosito jel

Definicid: Egyed: Valami egyed, ha sajat 1éte van. A sajat létet a tulajdonsaga(i) alapjan
kapja.

Példa: Az egyed, tulajdonsdg-ra:

Név Eletkor | LAbméret

Ferenc Jozsef |42 43

Itt a "Név","Eletkor","Labméret" mind tulajdonség. A sor, amiben az adatok vannak,
Y g

pedig az egyed.

Ezek az adatok addig tudnak egyedeket egyedi modon leirni, amig nincs 2 ugyanolyan

nevi, koru és labméretii ember.

Példa: Szeretnénk 100000000 hangyabdl egyedeket csinélni. Ezt tigy lehet, hogy minden
hangyéhoz rakunk egy azonositd szamot. (Vagy minden hangyat egy szdmozott dobozba

rakjuk az Osszeset kiilon-kiilon):

Hangya azonosité

1

2

31

791

Definicio: Hal/maz: [A matematikai halmaz] +, hogy a benne taldlhat6 elemeket meg

tudjuk kiilonboztetni egymastol.

Definicio: Kapcsolat: Egyedeknek a viszonya.

Jol strukturalt adatoknal 1 halmazba kell rakni, ha k6z0s az értelmezés és az

attributumok hasonloak.

Pl: A név tablaba, a NEV mez3 mindenhol az ember egyed nevét tarolja.

Halmaz példak:

NEV

Jakab

NEV

Jozsi

Feri

Maté

ELETKOR

17

8

99

31

Lathatd, hogy egy halmazba azonos értelmezésii objektumokat tarolunk, hogy a
szemantikus metaadatok kozosek lehessenek. (Majd ezekbdl fel kell épiteni a kapcsolat

példanyokat (

Pl: SELECT result)) Példa tulajdonsag halmazra:

Valami SZINE

Kék

Piros

Zold

Cyan

Ezeket tarolhatjuk,

Pl: 15 hosszu karakterlancként vagy r,g,b szam 3-asokként. Mindegy, csak azonos legyen
a szemantika a halmazba. (K6z06s szemantika)

Halmaz ~= Tipus de mégse, lassuk:

Halmaz név Tipus

NEV VARCHAR(50)

Hasonloéak. (De nem 1/1 ugyanazt jelentik)

Példa: Definialjunk egy egyedhalmazt, a hallgatot. Ennek neve lehet Hallgato és de XN-
34-CDT is, csak az eldbbivel jobban jarunk.

Hallgatok

Név Kor | Cipéméret

Ronté Palko 23 44

Ebben a tulajdonsaghalmazok a Név,Kor €s CipOméret.

Csinaljunk egy masik egyedhalmazt is:

Egyetemek

Név Milyen jo
BME Nagyon
Corvinusz Meh

Definicio: Egyedhalmaz: Azonos tulajdonsaggal rendelkezd egyedek halmaza.

Definicio: Tulajdonsdaghalmaz: Azonos egyedet leird tulajdonsdgok halmaza.

Definicio: Kapcsolathalmaz: Azonos kapcsolathoz tartozo szemantika.

Hat, ez nagyon sokat mondd. De probaljuk meg megmagyarazni.
Példa: Legyen egy [Oda jar (X,Y)] kapcsolatunk. Ahol mondhatjuk ezt 1s: [Oda jar
(Jakab,BME)], ami azt jelenti, hogy Jakab a BME-re jar.

Lehet ternaris is a kapcsolat (akarmennyi szerepld lehet benne).

Példa: A postan a feladok csomagokat kiildenek a cimzetteknek. Itt van a felado, a

csomag ¢s a cimzett is. Ezekbdl lehet a [Posta] relacio példanyokat csindlni, amik a
kapcsolathalmazba tartoznak.

Fontos, hogy ternaris vagy tobbes kapcsolat esetén sosem szabad egy kapcsolt egyedet

sem ignoralni

Pl: csak 2 egyed kapcsolddik érdemben. Nem lehet csak 2-t hasznélni, ha 3 van.
Relacios sémakra példa

Tegyiik fel, hogy akarunk modellezni egy olyan modellt, ahol taroljuk, hogy ki jar oda.
Egy didk egy helyre tud jarni és egy iskoldba tobben is jarhatnak. Az iskolékat a neve
egyedileg megkiilonbozteti, ezen kiviil taroljuk az alapitas évét. A tanulordl a nevét,
igazolvanyszamat (ami egyedi) €s életkorat taroljuk. Ezen feliil a kapcsolatba taroljuk,
hogy mikor kezdett el oda jarni.

Ez alapjan egy relaciés séma, amit adhatunk, igy nézhet ki:
TANULO(igazolvany szam(PK), nev, szuletesi datum)

IDE JAR(tanulo igazolvany szama(FK), iskola neve(FK), mikortol)
ISKOLA(nev(PK), alapitas_eve)

No, ebbdl sok minden latszik. Elsonek feltlinhet, hogy itt a relaciot is tablaként
modelleztiik, viszont a relaciot az attributumai nem azonositjak egyedileg. Ezt meg kell

oldani. Ezen feliil még latszik, hogy formalis okokbdl nem hasznaltunk ¢kezetes betiiket

és sz0kozoket az azonositokban.

Az elsOdleges kulcsokat 1 alahtizas, az idegen kulcsokat 2 alahuzas jeloli.

No, de mi van, ha mi sporolni szeretnénk ¢s nem akarjuk az iskola neveket és az
igazolvany szamokat redundénsan 2 helyen tarolni? A megoldas a mesterséges kulcs.
Ennek az a szerepe, hogy egy olyan szdm, ami az attributumoktol fiiggetleniil egyedileg

azonositja az adott egyeded, ennek suffixa altalaban " 1d" szokott lenni. Ez egy sima

szam ¢€s igy nem kell 2 helyen kulcsként a neveket / mas komplexebb adatokat tarolni:

TANULO(tanulo id(PK), igazolvany szam, nev, szuletesi datum)
IDE JAR(ide jaras id(PK), tanulo igazolvany szama(FK), iskola neve(FK), mikortol)
ISKOLA(iskola 1d(PK), nev, alapitas_eve)

Fontos latni, hogy a kapcsolat is kapot egy mesterséges kulcsot igy mar azt is lehet
egyedileg azonositani. Azt is fontos észrevenni, hogy attél még, hogy nem jeloljiik az
egyedi attributumokat, majd leképezésnél nem szabad engedni, hogy 2 ugyanolyan

igazolvanyszamu tanul6 legyen. Erre majd a constraint-ok lesznek hasznosak.

ER modellek a valos életben

Példa: Az SAP rendszerbe nagysagrendileg 10000 egyedhalmaz / kapcsolat halmaz

talalhat6. Ennek a fejben "elképzelése" nagyon nehéz €s nem igazan elérheto.
Erre talaltak ki az ER diagrammot.

Definicid: ER diagram: Egy ER modellt grafikusan 4brazold diagram. Jelzések:

Tulajdonsag

Egyed

Kapcsolat

Definicio: EER (Extended ER) model: Az extended ER olyan specialis funkciok

megvalositasara szolgal, amire az ER nem képes. Elemei az ISA kapcsolat, gyenge

egyedhalmaz és a determinal6 kapcsolat.

Abrazoljuk az el6z6 hallgaté és egyetem ER modellt ER diagramként:
Hallgatd Egyetem

Itt a krumplikba vannak a tulajdonsaghalmazok és 6ssze vannak azzal kotve, hogy minek

a tulajdonsagai.

Az oda jar reldcio is meg van jelenitve a 2 halmaz kozott.

De tudjuk-e az egyedeinket (€s igy a reldcidinkat) jol megkiilonboztetni?

Definicio: Kulcs: Olyan tulajdonsagok, értékek, ami egy egyedet egyértelmiien

azonositani képes. Jelolés:

(o)

Definicio: /degen kulcs: Egy olyan mezd, ami egy kapcsolaton keresztiil lehetdvé teszi
az egyik egyednek, hogy a masik kapcsolt egyedet azonositsa. Ilyet nem jeloliink az ER

modellben. Ezt relacidval jelezziik.

Az egyetem nevét valaszthatjuk kulcsnak, mert 2 BME nincs (Oké Bécsi és Budapesti
BME is van de a teljes neviik szerint mar lehet.)

Viszont a Hallgat6 mar egy kicsit bonyolultabb...

Mit hasznaljunk? Hasznéalhatjuk a Név-Kor-Cipdméret harmast, de az nem lenne tul jo
egyedi azonosito, mert 1étezhet 2 ember ugyanazzal a névvel, labmérettel és korral.
Megoldas: Csinaljuk ugyanazt, mint a hangyakkal, minden ember kap egy egyedi szamot
(ID-t):

Cipomeéret

Az egyetemnél bejeloltiik a Nevet kulcsnak mert az megfelel annak.
No, de nem csak 1 relacid lehet 2 (vagy N) egyed kozott:

Cipdméret

Oda jart

Mikor jart oda

Ev

Lehet, hogy akarjuk tudni, hogy ki jart REGEBBEN ide. Vagy, hogy ki melyik évben jart
ide.

Fontos, hogy mit tudsz hasznalni kulcsnak, milyen reldcidid lehetnek, az fiigg az aktualis
DBMS rendszertdl.

Kapcsolatok funkcionalitasa (/kardinalitasa)

A kapcsolat halmazok funkcionalitasat csak binaris kapcsolatra értelmezziik.

Kapcsolat tipusok:

e | az 1-hez:

Egyed2

Egyed1

TFH: Egyedl oldalarol 1-N-né€l. N legfeljebb 1 és Egyed2 oldalarél pedig 1-M-nél M
legfeljebb 1. Ebbdl N legfeljebb 1 és M legfeljebb 1 — 1-1-hez relécio.

Ez a relaci6 felesleges, hatékonysag miatt a 2 egyed egybe is lehetne. Es nem annyira

tudunk példanyszintent relaciot csinalni, mert nem tudjuk, hogy milyen példanyok
lesznek. Csak az Egyedek struktarajat ismerjiik.
Az 1 az 1-hez kapcsolat invertalhato, mert mind kett6 oldalrdl egyértelmi a leképezés.

e 1 atobb-hoz:

/ e
Egyed1

Ez a reldcid az egyik oldalrdl egyértelmi, a masikrol pedig nem egyértelmi. (1-tobb-
hoz = tobb-1-hez)

e tObb a tobb-hoz:

Egyed2

Eqgyed1

Ez a relaci¢ az egyik oldalrdl sem egyértelmii.

[tt majd problémakba iitkdziink, kell normalizalas de errél majd késdbb.

Fontos: Itt a pontos ER modelling jelolést hasznaltam, de van, ahol nyilakkal kell jelolni

a relaciokat. (

Pl: Az Adatb targyban nyilazunk). Azt kell tudni, hogy mindig az 1-es kapcsolat felé

mutatjuk a nyilat. 1 a tobbhoz esetén az egy felé. 1 az 1-hez esetén mind kettd fele.

Pl: Ha nem tudod, hogy merre nyilazz kérdezd meg a gyanusitott egyedet (amibol
feltételezed, hogy kell huzni) és tedd fel a keérdést: "Ki/Mi tartozik hozza".

Pl: Ha feltételezziik, hogy 1 filmet csak 1 ir6 irhat de 1 ird tobb filmet is irhat. Igy a

valasz az irondl, hogy "Ehhez az ir6hoz ezek a filmek tartoznak."
X is a 'Y kapcsolat

Modellezziik le egy repiil6téren dolgozok nyilvantartdjat:

Dolgozd

ZAN
\

Pilota Repilé engedély

tho

6

Azt akarjuk, hogy a repiiléengedélyt ne kelljen a dolgozdok egyedbe tarolni. Megoldas:
Csinalunk egy Pilota egyedet €s hozza kapcsoljuk a Dolgozohoz. Az [Is A] relécid azlap

jelentése: X is a'yY, szoval

Példa: Pilota egy Dolgozo. Mindig abbol mutat nyil feje, ami leszarmozik. (Ez kicsit

olyan, mint az Object-Oriented inheritance).

Gyenge egyed halmaz

Példa: Az sszes budapesti 4ltalanos iskola dsszes osztalyat ki akarjuk listazni. Igy

kapunk valami ilyesmit:

Osztalyok

1.A

2.A

1.A

1.B

1.B

1.B

2.A

No, ez igy nem jo. Az a probléma, hogy iskola szinten egyediek az osztalyok, de sok

1skola szinten mar nem.

Definicid: Gyenge egyedhalmaz: Egy olyan halmaz, ahol az egyediség nem mindig van
biztositva. Mas szoval: Amikor nem egyértelmiien azonosithat6 (mas egyedhalmazra is

van sziikség). Jelolés:

Gyenge egyedhalmaz

Definicio: Determindlo kapcsolat: Egy olyan kapcsolat, ami egyediséget biztosit egy
gyenge egyedhalmaznak. Mas szoval: A gyenge egyedhalmazt kot 6ssze a tulajdonos

egyedhalmazzal. Jelolés:

< Determinlé kapcsolat >

Definicio: Fiiggvényszerii bindris kapcsolat: Fiiggvényszerii egy binaris kapcsolat egy

az egyhez kapcsolat esetén.

Példa ezekre (az iskolas példat hasznalva):

Iskola

Osztalyok

Az osztalyok az altal lesznek azonositva, hogy melyik iskoldhoz tartoznak. Most nézziink

egy példa outputot:

Osztalyok

Kossuth Altalanos Iskola - 1.A

Ezist Altalanos Iskola - 2.A

Kossuth Altalanos Iskola - 2.A

Eziist Altalanos Iskola - 1.A

Mostmar az egyediség biztositva van.

Adatmodellek

A Chen féle ER modellhez kell hozzarakni valami +-t is, hogy adatmodellnek lehessen

hivni azt.

Az adatmodellek megjelenési sorrendben:

1. hierarchikus
2. halods

3. relacios

4. objektumorientalt
5. deduktiv

6. fuzzy,

A relacios adatmodell a legelterjedtebb.

Definicio: Reldcios adatmodell: A halmazok valahogy relacio-ban vannak egymassal.

Definicio: Relacio: Halmazok descartes szorzatanak részhalmaza.

Definicio: Reldcio fokszama: A relacioban 1€vo oszlopok (attributumok, tartomanyok,

tulajdonsagok) szdma a relacié foka (arity, aritas).

Példa:
Legyen D1 ¢és D2 halmaz:

D1

1 2 3

D2

a b

D1 és D2 szorzatanak részhalmaza:

D1 x D2

1 a
1 b
2 a
2 b
3 a
3 b

De nem kell ez a teljes, lehet kisebb részhalmaza, pl legyen r1 reldcid:

r1
1 a
3 b

Ez 1s reldcio. (Az iires halmaz is reldcio, abban is olyan elemek lennének amiben érték

parok vannak). Ha elnevezziik az oszolopokat:

D1 D2
1 a
3 b

Akkor mar lehet tudni, hogy melyik adat melyik halmazbol van.

Ez 1s egy formalizmus.

A relacios adatmodell, V2

A tudas replezenetélasara kell, hogy tarolni lehessen az adatokat. (Entitasok,
tulajdonsagok, relaciok), fontos a viszony.

Jol struktaralt adatokat jol korbe irtunk mar struktaralis metaadatokkal. Ezekhez az
oszlopokhoz hozzéarendelve a szemantikat, értelmet kapunk.

Otlet: Az 6sszetartozo rekordokat 6ssze pointerezziik. Ez nem telljesen jé, de ez is egy

megoldas.

Pl: Ha bizonyos adatokat dssze pointereziink akkor az egy rugalmatlan reldcio lesz és

oda-vissza nem lesz egyértelmii az 6sszekapcsolas.
Masik 6tlet: Hol van 2 olyan adat, ahol 2 hasonl6 érték van. -> Erték azonossag alapjan
kapcsolunk 6ssze adatokat.

A reldcids adatmodell értékazonossagon alapul.

IDeﬁnicié: Ertékazonossag: 2 érték azonos, ha attributumai szerint hasonloak.

Miuveletek az adatokon

50 évvel ezelbtt: Minek lenne értelme? (Tablazataink vannak €s abba adatok és értelmes
dolgokat akarunk lekérdezni).
Kérdés, minek kell definialni?

A definici6 alapjan a halmazmiiveleteket kell definialni:

e Halmazalgebrai reldcidk: unid, metszet, stb... BIZTOS kellenek!

o Uj relaciok is fontosak: vetités, szelekcid... majd tobbet lejebb tudhatsz meg.

Definicid: Reldcioalgebra: A reldcidhalmazon végzett miiveletek.

Definicid: Reldcio unio: 2 relaciot dsszecsatolunk és a duplikans elemeket kiszedjiik,

hogy csak egyszer szerepeljenek. (Van-e értelme?)

Példa: Adott egy 6 €s egy 3 oszlopu reldcid. Unidzzuk 6ssze ezt! Hogy kéne ezt

csinalni? Az eredményhalmazban levd oszlopoknak nem biztos, hogy lesz értelme.
Otlet: Azonos paritast relaciokra értelmezett az unié miiveletét engedjiik CSAK. Egy
adatot, meg csak akkor tegyiink az unioba, ha mar nincs is benne.

Miért gdz a duplikans adat: Azért, mert az ER modellnek csak akkor van értelme, ha

mindenki egyedileg meg van kiilonboztetve. Ha csak az egyiket modositjuk, akkor mar
baj van.

Hacky megoldas: Uj rejtett oszlop (row_id), ami egyediséget ad egy sornak.

Definicié: Paritds: 2 relacionak akkor azonos a paritdsa, ha azonos oszlopszama van.

Gyakorlatban: Az a j6 megoldas, ami miikodik.
Lényeg: legyen egy formalizmus, ami alapjan az adatbazissal interaktalhatunk.
Definicio: Reldcio kiilonbsége: 2 relacid kiilonbsége azonos paritasu relaciokra

értelmezett €s végrehajt rejtuk egy halmaz kiilonbséget.

Definicio: Relacio metszete: 2 relacion vald metszet halmazmuveletként vétele.

Komplemens képzésnek mennyi értelme van? Nem sok, mert kis adatbazis rekordok
komplementere baromi nagy.
Definicio: Veges relaciok: Ha az input és tarol6 kapacitas véges és a

végeredményhalmaz is véges, akkor ezeket lancolni lehet. Véges relaciokbol mindig

csak véges ¢és zart relaciokat szabad eldallitani).

Definicio: Descartes szorzat: A Descartes szorzat vagy kereszt szorzat 2 halmazt 6ssze

lehet kapcsolni az 6ssze elemen keresztiil.

Lehet-e, hogy van olyan eset, ahol a descartes szorzatot nem érdemes alkalmazni? Nem,
nincs ilyen. (Tipik, trividlis vizsgakérdés) Ez a szorzat mindenfélére jo lesz.

Lehet olyat csinalni,

PL: minden hallgaté6 minden egyetemmel 6ssze van kapcsolva és mi majd kivalogatjuk,

hogy melyik relaciok kellenek.

Pl: ide jar.

Definicio: Reldcios schéma: egytabla oszlopainak attribitumai, neve, tipusa, stb...

Definicio: Projekcio: Jele: I1. Relacios schémabol fog kivalasztani valamilyen elemeket

attributumok szerint.

Példa konkrét relacio halmazra:

Név Mennyit keres
Feri 5FT
Jani 999999999 FT

Példa: Egy projekcié ami kiirja azt, hogy ki mennyit keres: IInev,kereset(emberek)

Definicio: Szelekcio: 1 operandusos miivelet. Adott halmazbol bizonyos attributum

alapjan. Jele: 6. Az operandus reldcio azon elemeit 6rzi meg, melyen az input kritérium

formula igaz értéket ad.

Definicié: 0-ad rendiiformula: Egy formula nulladrendii ha nincsenek benne kvantorok.

Példa: keressiik meg azokat az embereket akik 600 FT-kevesebbet keresnek: IInév,
o(<600 FT),

Példa: output:

Név

Feri

Definicio: Reldcios teljes: Ha egy relaciosalgebra ezt az 5 muveletet ki tudja fejezni,

akkor reldcidsan teljes.

(EXTRA!) Objektumorientalt adatmodell

Az objektumorientalt adatmodell az objektumorientalt programozas modszertananak egy
része.

Hatékonysagdban nem olyan jo még, mint a reldcids adatmodell.

Definicio: Objektum: Az objektumorientalt adatmodellben jelenik meg. Ez az objektum
egy olyan egyed, ami tudja a bels6 tulajdonsagait, és azt, hogy milyen masik
objektumokkal van relacioban.

Definicid: Objektumorientdlt: Az objektumorientilt adatmodellben az adatbaziselemek
tudjak, hogy kik-0k, mik-0k? Egyedek helyett objektum elemek vannak.

Az objektumorientalt adatmodell fobb jellemzoi:

e Becsomagolas: (angolul: encapsulation) Az objektum adatainak és rajtuk végezhetd

miuveletek (metddusainak) dsszessége egy halmazban.

» Adat absztrakcio: Az adatokat absztrakt modon is meg lehet hatarozni és dbrazolni.

o Oroklédés (inheritance): A sziild objektumbdl a leszarmazottjaik 6roklik a

miveleteiket és tulajdonsdgaikat.

e Tobbalakusag (polymorphism): Ugyanazt az utasitast / miiveletek mas objektumok
eltérden értelmezik.

(EXTRA!) Hierarchikus adatmodell

Ez az adatmodell volt az egyik els0, €s egyben az egyik legkorlatozottabb, sok szaballyal.

A hatvanas évek végén alakult ki.
Pl: BM IMS adatbaziskezelo rendszer alkalmazta ezt a modellt.

A nevébdl is lathato, hogy hierarchikusan, fa szerkezetben lesznek a modellek

elhelyezve.

Példa: Hierarchikus adatmodellre:

Gyokeér

v h J v v

:

Csomopont

Level

Csomopont

h

Csombpont

Leval

Leval

Level

Levél

Levéal

Definicid: Hierarchikus: Az adatmodell hierarchikus, ha az adatok és kapcsolataik

véges mennyiségll faval irhatdak le és nincs benne tobb a tobbeshez relacio.

Definici6 szerint tobb egymastdl fiiggetlen fabol is allhat egy modell.

A fak csomodpontjaiban és leveleiben helyezkednek el az adatok.

A kozottiik 1€vo relacio a sziilo-gyerek kapcsolatot jelenti.

Csak 1 a tobbhoz kapcsolat megengedett, ez azt jelenti, hogy 1 sziilonek tobb gyereke is
lehet, de egy gyereknek csak 1 sziilgje lehet.

Példa: jo pé¢lda lehet egy csaladfa, vagy egy fonok-beosztott kapcsolat:

lgazgatd

Tanar1 Tanar2 Tanar3 Tanar3

h v v

Demonstrator

. Diak2 Diak3
tanar

Digk1

(EXTRA!) Halos adatmodell

A halés adatmodell egy hierarchikus adatmodell tovabfejlesztett része.

Elsddlegesen azért csinaltak, hogy a bonyolultabb reldciokat jobban tudjak abrazolni.
1969-ben a CODASYL bizottsag altal 1étrehozott DBTG (Data Base Task Group)
jelentése alapjan hoztak létre.

Megjelenése utan 20 éven keresztiil majdnem mindenhol csak ezt hasznaltak. Utdna a

relacids adatmodellles adatbazis elverte népszeriiségben.

Példa a halos adatmodellre:

Osztaly

Didkok Tandrok
¥ l ¥
Osztalyfonok Matek Irodalom
¥
Angol Magyar

A hierarchikus adatmodellhez képest itt mar nem csak egy sziilohoz tartozhat tobb
gyerek, de egy gyereknek is lehet tobb sziildje. Az egyedek kozott tetszdleges
kapcsolatok épithetdk ki. Ez a bizonyos hal6 tetszélegesen nagy méretl lehet, abrazolasa
tobb, egymasra hierarchikusan felépiilé kisebb egységekkel, setekkel torténik.

A halés adatmodellek graffal irhatoak le.

Példa: A tobb Osre:

Osztaly

Gondnok Didkok Tanarok

h

Irodalom

Osztalyfonok

Matek

h

Dolgozd -

Magyar

h

Angol

Definicié: Halos: Egy adatmodell halos, ha grafként lehet dbrazolni az egyedek

crcr

Definicio: Hdlos relacio: A halos relacio, vagy set a halos modellben rekordtipusok
kozotti kapcesolatot irja le. Formalisan: Kétszintti fa amelynek gyokéreleme a tulajdonos,

¢s levélelemei a tagok.

Definicio: Tdrolasi teriilet: A tarolési teriilet, avagy area egy halos adatmodellben egy

fizikai tarolasi egységet jelol. Valamilyen szempontbol egységesen kezelendd adatfijl.

Ezzel a kettd 0j definici6 segitségével a legbonyolultabb halos modellek is leirhatdak.

(EXTRA!) Deduktiv adatmodell

A deduktiv adatmodell a reldcios adatmodellre €piil és azt kiterjeszti logikai
kovetkeztetésekkel.

Definicio: Deduktiv: Egy adatmodell deduktiv, ha a relacio halmazokban csak tények
vannak tarolva és szabalyok segitségével nyernek ezek a relaciok értelmet.

| Definicié: Szabdly: Logikai formula.

Ez azért jo, mert Uj szabdlyokat tudunk deduktalni, anélkiil, hogy eltarolnank azokat,

mert a tényeg és szabalyok mar megvannak.

Példa: Tényekre:
e Anna egy didk.
e Péter egy tanar.

e Péter tanitja Annat.

Példa: Szabalyokra (Prolog formatumban):
jarhat_kurzusra(X, Y) :- diak(X), tanit(Tanar, Y).

Aztan szeretnénk tudni, jarhat-e kurzusra valaki:

?- jarhat_kurzusra(peter, Programozas).

(EXTRA!) Fuzzy adatmodell

Kezdjiik egybdl egy paradoxonnal.

Példa: Van egy homok kupacunk ¢és valamennyiszer elvesziink egy homokszemet beldle.
Minden homokszem elvételekor ugyanugy homokkupac marad a homokkupac. Ebbdl azt
tudjuk kovetkezetni, hogy:

Homokkupac - 1*homokszem = Homokkupac

Ebbdl az egyenletbdl észre vehetjiik, hogy csak akkor lehet igaz, ha a homokszem=0, ha
a Homokkupac mérete véges. Ezt csak azért tudtuk fuzzy logikaval megallapitani, mert
nem volt pontosan a homokkupac és homokszem definialva.

Ahhoz, hogy ne legyen paradoxon, kell egy formadlis definicié a Homokkupacnak.

Példa: "A homokkupac definicigja legyen az, hogy a homokszem halmaz elemszama

legalabb négy és az elrendezés legyen tetraéderszerii."

Definicio: Fuzzy: A fuzzy adatmodell a bizonytalan vagy pontatlan adatokat €s

relaciokat is képes kezelni. Az értelmezésiikhoz tagsagi fokokat (0 €s 1 kozotti

értékeket) rendel, amelyek kifejezik, hogy egy allitds mennyire igaz az ismert adatok

alapjan.

Roviden a fuzzy adatmodell gy fok miikodni, hogy fuzzy logikaval meghatarozza a
relaciokat, azok értelmét, de ide majd toltok fel még extra anyagot.
De vajon tényleg sziikségszerii-e, hogy a rendszeriink csak ilyen definiciokat

kezelhessen?

Fuzzyness - hoszabb felvezetés

Nyilvan vannak olyan kupacok, amikre ranézve mindenki tudja, hogy azok
homokkupacok, és vannak olyanok amir6l mindenki tudja, hogy nem azok semmi

koriilmény alatt. Sajnos vannak azok is amik csak "valahany %-ban homokkupacok".

Definicio: Fuzzy logika: Egy olyan eldontés, ahol egy objektum tipusabol deduktalva

nem csak igaz-hamis értékpar lehet, hanem van koztes érték is. Amike valami igaz is

meg hamis is, vagy se nem igaz, se nem hamis.

Ennek értelmében itt lehet valami egyszerre A és A komplementere is, de legalabb az
egyiknek igaz kell, hogy legyen. A homokkupacnal viszont lattuk, hogy ez nem mindig
1gaz vagy teljesiil.

Ezt (az arisztotelészi logikat) Boole foglalta axiomarendszerben. Ehhez képest

felmerultek a tobbértékt rendszerek.

Példa: A haromértéki rendszer: Igaz-1 | Hamis-0 | Eldonthetetlen-0.5
Példa: Az értelmezésre, feltéve A és B fiiggetlen érték készletet:
LUKASIEWICZ: (alap logika)

Es Vagy . . | A
A |B ~.. | Implikacio | Ekvivalencia .
(Metszet) | (Unid) negaltja
O (0 |0 0 1 1 1
0O (0510 0.5 1 0.5 1
0o |1 0 1 1 0 1
050 |0 0.5 0.5 0.5 0.5
05|05(0.5 0.5 1 1 0.5

A |B | S s | Fefeerea |
(Metszet) | (Unid) negaltja

0.5|1 0.5 1 1 0.5 0.5

1 10 |0 1 0 0 0

1 10505 1 0.5 0.5 0

1 1 1 1 1 1 0

BOCHVAR: (nonsense értelmezés)

A |B |E® Vagy | olikécié | Ekvivalencia |
(Metszet) | (Unid) negaltja

0O |0 |0 0 1 1 1

0 |05(0.5 0.5 0.5 0.5 1

0o |1 0 1 1 0 1

05|0 |05 0.5 0.5 0.5 0.5

0.5/05|0.5 0.5 0.5 0.5 0.5

051 |05 0.5 0.5 0.5 0.5

1 0O |0 1 0 0 0

1 10.5]05 0.5 0.5 0.5 0

1 1 1 1 1 1 0

KLEENE: (strong 3-valued logic)

A |B |ES vVagy || plikacio | Ekvivalencia | ©
(Metszet) | (Unid) negaltja

0O |0 |0 0 1 1 1

0O (0510 0.5 1 0.5 1

A |B | S s | Feferea |
(Metszet) | (Unid) negaltja

0 |1 0 1 1 0 1
050 |0 0.5 0.5 0.5 0.5
0.5/05|0.5 0.5 0.5 1 0.5
0.5|1 0.5 1 1 0.5 0.5

1 0 |0 1 0 0 0

1 05105 1 0.5 0.5 0

1 1 1 1 1 1 0

HEYTING: (intuicionista haromértekii)
A |B |E® Vagy | olikécié | Ekvivalencia |
(Metszet) | (Unid) negaltja

O (0 |0 0 1 1 1

0 |05]0 0.5 1 0 1

0 |1 0 1 1 0 1
0510 |0 0.5 0 0 0
0.5/05|0.5 0.5 1 1 0
051 0.5 1 1 0.5 0

1 0O |0 1 0 0 0.5

1 0.5|0.5 1 0.5 0.5 0

1 1 1 1 1 1 1

REICHENBACH: (haromértékii kvantumlogika)

A |B |ES Vagy || plikacio | Ekvivalencia | ©
(Metszet) | (Unid) negaltja

0o |0 |o 0 1 1 1

0 |05]0 05 |1 0.5 1

0o |1 |o 1 1 0 1
050 |0 05 |05 0.5 0.5
05|05 |05 05 |1 1 0.5
051 |05 1 1 0.5 0.5

1 o |o 1 0 0 0

1 (0505 1 1 0.5 0

1 11 |1 1 1 1 0

(VALAKI NEZZE AT EZEKET PLIZ)

BOCHVAR-logika a kétértékil logika egyik alaptulajdonagat sem elégiti ki, ugyanis ez

barmely miiveletre eredményt 0.5 ad, ha valamelyik operandus értéke 05. (Hasonloan a
NaN értékhez)

Ez a 3 értékii logika altalanosithatd N értékre is. N értekil logika igazsagterét (k/(N-1))

jeloli, ahol k=0,1,2,...N-1.

Definicid: /mplikacio: Ha A implikalja B-t, akkor ha A igaz akkor B-nek is igaznak kell

lennie.
Igények és motivaciok

A homokkupac paradoxont €s ahhoz hasonlé paradoxonokat feloldhatunk formalis
definiciokkal is de hasznalhatunk fuzzy logikat.

Régobta igény van egy olyan rendszerre, ami ezeket a paradoxonokat fel tudja oldani
emberi segitség nélkiil. Ami fontosabb, az az, hogy ezeket a paradoxonokat
autématikusan fel lehessen oldani.

Ez is egy ugynevezett intelligencia.

P¢ldak az ilyen gépekre:

e Kempelen Farkas (1734—1804): Sakkozo torok
e Neumann Janos (1903—-1957): Modern szamitogep
(A modern szamitégép magéaban nem sok intelligenciaval rendelkezik)

Definicio: Mesterséges Intelligencia: Egy olyan algoritmus, amely arra hivatott, hogy

egy emberi viselkedést vagy egyéb termiszeti szabalyszerii viselkedést tudjon utanozni

minnél pontosabban.

A legfébb motivacio az volt, hogy ilyen szerkezeteket konnyen lehessen tervezni, vagy
konnyen lehessen olyan modszereket talalni, melyeket kovetve ilyen szerkezethez

juthatnak az emberek.

Példa: Onvezetd auto.
De sajnos egy onvezetd autd akar jovobeli létrejottét nem tudjuk se cafolni, se

bizonyitani, mivel biologiai viselkedést kell mimikaznia (ember vezetését).

Az is felmertl, hogy egyaltalan jo dontéseket hoz-e az autd, és azt mi meg tudjuk-e
itélni.

Példa:

e Az utas vagy a gyalogos ¢lete a fontosabb?

» A fiatal vagy 1d6s ember¢ a fontosabb? (Ha az iitk6zés valamelyikkel elkeriilhetetlen)

Az is neheziti a rendszert, hogy feliilr6l nem korlatos informacio egységgel kell
dolgoznia egy ilyen programnak.

Megoldas: Kozeli optimum keresésa a szimulacidban. Erre lesz jé a fuzzy logika.

Fuzzy logika és kozelités

Osszefoglalva a fuzzy halmazok és fuzzy logika megalkotasaban a legdontdbb motivald
erd kétség kiviil a nagybonyolultsdgi miiszaki feladatok megoldasanak igénye volt.

Az 1950-es évektdl kezdve a mesterséges intelligencia kutatas a Boole-logikat hasznalta,
mint formalitds. Ez azért jé, mert egyszert a ha-akkor tipust implikéacidkat leirni a

kovetkeztetési szabalyokat.

Definicio: Implikacio: Adott A és B esemény. Ha A implikalja B-t akkor ha A igaz akkor

B-nek is igaznak kell lennie.

A Boole algebraban a legkonnyebben az (— A V B)-vel lehet kifejezni. Fontosabb
szabalyok ra:
Modus ponens:

A — B akkor kovetkeztetés: B igaz

Modus tollens:

A — B akkor kovetkeztetés: ha —A igaz akkor —B is igaz

Hipotetikus szillogizmus:
A — B és B — C akkor kovetkeztetés: A — C

Hat ez igy magaba nem sokat mond, de egy példa segitene szerintem.

Példa: Tudjuk, hogy ha valaki tanar, akkor tanit.
Tudjuk azt is, hogy Tomi tanar.

Ebbdl azt a kovetekeztetést tudjuk levonni, hogy Tomi tanit, mert 6 tanar és a tanarok

tanitanak.

Definicio: Fiiggvényimplikacio: legyen x €s y valtozo és A(x) és B(y) pedig valamilyen

fliggvény, ami x €s y fliggvényében szimbodlikus igazsigértéket vesz fel. Ekkor A(x) —
B(y) értelmes, és annyit jelent, hogy ha x értéke K (valamennyi konstans skalar) akkor

az implikal valami y értéket.

Definicio: Szimbolikus igazsagerték: Egy olyan Boole érték, amely azt jelzi egy A

fliggvényre, hogy a kapott x valtozdra igaz vagy hamis értéket ad vissza.

Ekkor mar komplexebb dolgok is leirhatoak.

Pl: jelolje X azt, hogy hany Celziusz fok van és legyen egy olyan fiiggvény, ami
megmondja, hogy fagy-e (mondjuk 0 fok alatt igazat ad, amtgy hamisat). [lletve van egy
masik szabalyunk: ha fagy, akkor havazik.

Ekkor meg tudjuk mondani, hogy ha -20 fok van, akkor fagy és akkor havazik is, mivel

formalis implikaci¢ allitja ezt a tényt.

Ez igy nagyon jonak tlinik viszont van egy kis probléma. Egy elég nagy probléma, ez az,
hogy a paraméterek €s szabalyok novekedésével a megallapitds komplexitas
exponencidlisan né a mostani szamitogépekkel.

Tétel: Ha a bemenet k valtozoét tartalmaz melyek x1,x2...xk és ezeknek legyen T a

deduktiv korlatja, ekkor a szabalyhalmaz fels6 korlatja T"k.

Bizonyitas: Minél finomabb a kozelités, annal nagyobb T, és 2-szer finomabb felosztas
esetén nem 2-szer annyi-ra nd a szabalyhalmaz, hanem 2”k-ra, mert az osztas = 2x tobb
kombinacio.

Definicid: Deduktiv korlat: Vegyunk X1,X2...Xn n darab fuzzy input valtozot. Ekkor T

korlat jeloli a kiillonboz6 logikai szimbolumok szdmanak fels6 korlatjat, amelyek ezek

valtozokbdl és implikacigjabol konstruktalhato.

[tt mar el tudunk képzelni egy Al macskat, aminek az a Iényege, hogy attol fiiggden,
hogy hol az egér, menjen oda. A macska fejében egy olyan szimbolikus szabélybazis van,
figyelembevéve kovetkeztet arra, hogy a kovetkez6 mintavételi pillanatban hol lesz az
egér. A macska az egér mozgasterét ugy latja, mint egy raszterhalo altal felosztott
sikidomot. A kovetkeztetés eredménye a raszterhald egy mezeje; ezen beliil a macska a
kimerit6 keresés mddszerével hatarozza meg az egér tényleges helyzetét. Ha a macska
fejében finom modell van, azaz nagyszamu szabaly, akkor a kovetkeztetés eredménye
egy kis méretii rasztermez0 lesz, €s ezért a mez0 azonositasa utan a macska hamar meg
fogja talalni az egeret. A probléma ilyenkor onnan adddik, hogy a macska fejében 1évo
finom modell nagy szabalyszamot feltételez, €s ezért a macska kovetkeztetési ideje
megno (ez persze visszahat arra 1s, hogy az egér pillanatnyi helyzete mégiscsak kisebb
pontosaggal adhatdo meg, hiszen hosszabb 1d6 alatt az egér nagyobb tavolsagot mozdulhat
el). Ha ezzel szemben olyan megoldast valasztunk, ahol a macska kovetkeztetési ideje
rovid, ez kis szabalyszamot, kovetkeztetésképpen pontatlan modellt jelent, vagyis a
macska hamar kikovetkezteti az egér 1) helyzetét jelentd rasztermezot, de ez a
rasztermezd nagy kiterjedésii lesz, és ezért a keresés masodik fazisa lesz hosszadalmas.
[LSZ Jegyzet]

Vajon létezik-e optimalis kompromisszum? Hat, lehet, de nem trivialis. Bebizonyithato,
hogyha a robot gondolkodasi ideje €s a mezdn beliili keresés 1€pésszama rogzitett

koltségértékeket jelentenek, akkor a szabalybazis méretének optimuma szamos konkrét

mar meghatarozott modellfajta esetén egyértelmiien meghatarozhato.

Bizonyitas: 2 input valtozodra, a €s b-re. (Amennyiben ezeknek a szabalyai

ekvidisztansan helyezkednek el €s legfeljebb 2 szabdly tiizel egyszerre.

Ekkor T1 = cO*r+cl ahol r a szabalyok szama ¢és c0 ¢€s c1 alkalmaz konstansok.

A keresési 1d6: T2 = 2*c2/(r-1) (ardnyos a konzekvens halmazok tartdjanak hosszaval,
ami nyilvan forditottan aranyos a szabalyok szamaval)

Ahol c2 a rasztermezd keresési koltségének tényezdje.

Az 6sszesitett T ekkor T =T1+T2 = c0*r + ¢l + 2*c2/(r-1). Ez kiterjeszthetd

szabalyszamra vonatkoz6 optimumra derivalassal tetszéleges R mennyiségu szabalyra.

Hat ez igy még nem annyira érthetd, de késobb lesznek ra példak.
(Még bovitem, ha lesz idém) (10.oldal)

Illesztések

Ezekbdl nagyon sok lesz.

Definicié: Természetes illesztés: 2 operandusos muvelet. legyen L schéma aminek
attributumai al,a2,...an meg egy M schéma aminek bl,b2,...bn. Feltételezziik, hogy az
attributumok kozott vannak paronként azonos neviiek. Az A[il] azonos B[j1]. [lyen
parbdl legyen K db. egy A[ik] azonos nevii B[jK]. Annak a 2 relacidénak a természetes

1llesztését.

Példa: Ha R és S egy relacid akkor R < S jeldlje R és S természetes illesztését.

Példa: Szelekciora: Dolgozok tabla:

Név | Eletkor | Munkahely név

Feri | 23 KFC
Jani |44 Rheinmetall
Juli 33 KFC

Munkahelyek:

Munkahely név Ki vezeti?

KFC Péter

Rheinmetall Jani

Dolgozok ><i Munkahelyek illesztés eredménye:

| Munkahely | Ki
Név | Eletkor | . .
név vezeti?
Feri | 23 KFC Péter
Jani | 44 Rheinmetall | Jani
Juli |33 KFC Péter

[tt a Munkahely név alapjan csatoltuk 0ssze a 2 tablat. Fontos, hogy a vetités €s

kivalasztasnal R schémat €s halmazt is lehet megadni, vagy csak siman oszlopneveket.

ER modellezés gyakorlati anyag

Refresher:
£ Entitas A és B relacidja E Entitas
Is A
D gyenge
enfitds
C Entitas

Ezen az 4bran rajta van kb. minden amit eddig az ER modellekrdl tanultunk.

Egy par érdekes kérdés errdl az dbrarol:

1. Mi a kiilonbség az abran (miikodésben) az "Is A" és a determinald kapcsolat +
gyenge egyed kapcsolat k6zott? Megoldas: az "Is A" C egyed megorokli/atveszi a B
egyed kulcsait, mig a determial6 kapcsolat + gyenge egyednél a gyenge egyed az A
egyed kulcsaval kap egyediséget. Nem 6rokli meg se nem veszi at, csak azzal
egyiitt egyediséget kap. De leképezésbe mind a kettdt lehet hasznalni, majdnem

ugyanazok. Fontos lesz majd, hogy lassuk, hogy mikor melyiket érdemes inkabb.

2. ER modellbe az idegen kulcs nincs jeldlve.

Filmtar feladat

Példa: Szeretnénk egy film tarolé adatbdzit modellezni ezen kritériumok alapjan:

1 Filmet tobb ember tud irni.

1 Filmbe lehet tobb rendezd vagy szinész.

A filmnek van Cime, ami egyedileg azonositja (ebbdl kidertil, hogy ez a kulcs), hossza

percben, megjelenés datum, kor besorolas, bevétel.

Minden embernek kell van egy: Neve; lakcime; személyi szama, ami egyedileg

azonositja ¢és telefonszama.

Kezdjlink el otletelni ez alapjan. Csinalhatunk egy Személy egyedet, amibe benne van az

Osszes tipusu ember attriblituma és egy Film egyedet:

Film Szemely

Megjelenés

Telefonszam

No, hogyan tovabb? Kéne nekiink jelezni, hogy vannak irdk, rendezdk €s szereplok.

Probalkozzunk az "Is A" kapcsolattal:

Film Személy

Megjelenés

Kor besorolas

Is A

Rendezd

Szerepld

Valahogy az a terviink, hogy a leszarmozott egyedekbdl csindlunk kapcsolatokat. Nos, ez
nem annyira jo, mert mi van, ha valaki egyszerre szerepld €s ir6 i1s? Akkor redundas lesz
a modell.

Hat, akkor uj otlet kell:

Megoldas: a szerepkoroket kapcsolatként vessziik fel:

SEPAN

Film Rendezie
Megjelenés
Szerepelt benne

Kor besorolas

Nos, igy mar egyértelmli minden: 1 ember tud lenni egyszerre tob korben is €s tobb

filmben is tud lenni. Viszont itt egy jabb bokkendben iitk6ziink:
Mi van akkor, ha valaki 2 iker szerepl6t jatszik 1 filmben (

pl: Axel és Alex)?

Probélkozhatunk ugy, hogy felvesziink egy mez6t a "Szerepel ebben" reldciohoz:

Szerepelt benne

Kikent jatszik

Megjelenés

Bevétel
Telefonszam
Kor besorolas

Nos, ez majdnem szép és jo de 1 nagyon fontos dolgot meg kell jegyezni:

A relacio a tulajdonsagai alapjan nem képes egyedet azonositani. Lehet tobb Axel is

tobb filmben ¢és akkor mar nem miikodik ez.
Akkor probaljuk azt, hogy felvesziink egy Szerep egyedet ahol a név lesz az kulcs és egy

ternaris relaciot csinalunk:

|

Film Szemely o
Megjelenés
Szerepelt benne

Szrerep

Telefonszam

Ez mar jobb, csak az a baj, hogy a szereplé neve még mindig nem azonositja ggyedileg a

szereplot.
Példa: Van tobb Batman film €s tobb Batman is azokban amit tobb ember is jatszik. Nem
csak 1 ember jatsza az 6sszes Batman-t.

Otlet: Gyenge egyeddé tessziik a Szerepel egyedet és a Film altal lesz neki egyedisége.

P1: Melyik filmbe Batman?:

Megjelenés

Film Szemely

Telefonszam

Szrerep

Szerepld neve
Hat ez szép, mostmar minden egyértelmii. Vagy mégsem? Most az a baj, hogy az ER
modell nem mondja meg, hogy hogyan kell értelmezni ezt a ternaris determindlo
kapcsolatot. Hogyan is kéne ezt? Emlékezziink: Nem szabad ternaris kapcsolatnak csak 2
kotését hasznalni, és a harmadikat kihagyni. Igazdbol mar megvan, mire gondolunk és az
jO 1s csak azt tisztazni kell. Ennél mi sem egyszeriibb, bontsuk szét a ternaris kapcsolatot

2 binaris reldciora €s akkor tudunk csak 2 egyedet relaciot hasznélni és értelmezni:

Film Személy

Szerepelt benne

SN

-=::I: ben :j:::=-

v

Telefonszam

Szrerep

Ezzel az 1. feladatot el is végeztiik. Fontos leirni, hogy mikor mire gondoltunk, mert egy
ER modellnek igazén csak indoklassal van értelme.

A felsé vezetés meg van elégedve a modellel, de egy Gjabb feladatunk van:

e Csinaljunk olyan film ggyedeket, aminek vannak extra mezoi.
e Legyen egy Krimi film, amiben vannak még kiilon aldozat és gyilkos szereplok is.

e Legyen egy természetfilm, ami bizonyos helyeken volt forgatva bizonyos

orszagokban.

Ennél mar jusztifikaltabb az "Is A" leszarmozo kapcsolatot hasznalni, mert tudtommal

Szemeély I

nincs olyan film, ami természetfilm €s krimi is egyszerre:

Szerepelt benn

Szerepelt benne

Film

Megjelenés

Telefonszam
a Szerep
Is A

Krimi

Kor besorolas

Hogy legyenek a természetfilmnél a helyek? 1 hely 1 orszagban lehet csak, csinalhatunk

Természerfilm

kapcsolatot is, de csindlhatunk egy Hely egyedet aminek van egy orszag mezdje:

Személy o

Szerepelt benn

Szerepelt benne

Film

Telefonszam

a Szerep

Krimi

Kor besorolas

Természearfilm

<>

Helyrajzi szdm
A helynél hasznalhattunk volna hely ID-t vagy hely azonositét, de az altaldba "csalds”.

Jobb valami megfoghatot adni kulcsnak.

Milyen otlet van a krimire? Csindlhatunk 2 egy-tobbhoz kapcsolatot a Szerepbdl, ami

azért egy a tobbhoz, mert mar film specifikusra van sziirve a szerep a determindld

kapcsolat miatt:

Személy o

Szerepelt benn

Szerepelt benne

Film

a Szerep

4
Krimi
h

Természearfilm w

<>
Hew
(hemizin)

Telefonszam

Kor besorolas

Helyraigi szam
Ezzel ez a feladat kész is volna.

Jo tipp: Ha a feladat szamos relacidt akar,

PI: 10 tanar tanit 1 osztalyt, akkor nem kell kirajzolni a 10 darab t1,t2...t10 relaciot, elég

odairni, hogy: Ezt nem lehet szépen lemodellezni de még tudjuk, hogy 10 tanar tanitja

azt az osztalyt.

Iskola feladatra visszatériink

Legyen egy iskola modelliink, ahol modellezziik, hogy vannak iskolai osztalyok és

személyek is:

Az iskolanak van neve ¢€s helyrajzi cime. A neve egyedileg azonositja.

Legyen egy tanar, aminek van egy neve ¢€s lakcime, sziiletési ddtuma, valamint tanar

tud igazgato lenni. Tanar lehet osztalyfonok is.

Legyen egy didk, aminek van egy neve ¢€s lakcime, sziiletési datuma.

Legyen egy osztaly egyed, aminek van egy neve (mondjuk 12.A) és létszama.

Példa: Egy lehetséges implementacio igy nézhet ki:

Mév

Sziletési datum

Szemely Iskola

Ide jar

Osztaly

Adtribute

Megjegyzések: EbbOl az abrabdl hianyzik a tanar osztaly valamint, ha az ember
megfigyeli, az osztaly Iétszdma mez6 kicsit redundans, mert azt ki tudjuk szamolni abbol,
hogy milyen didkok kapcsolodnak az osztaly egyedhez. (Es abbol mennyi).

Ha feltételezziik, hogy didk nem lehet tanar, akkor példaal az "Is A" kapcsolattal
l1étrehozhatunk egy tanar egyedet:

Sziletési datum

MNév

Személy Iskola

Osztalyfonoke

Tanar

Adftribute

Jelezziik, hogy egy tanar lehessen igazgato:

Sziletési datum

MNév

Személy H Iskola

Osztaly

Osztalyfonoke
Aftribute

1 ember csak 1 iskolat tud igazgatni (torvény szerint 2025-ben, Magyarorszagon) €s egy

Tanar

iskolanak csak 1 igazgatot engediink. Jelezziik, hogy egy tanar tanithasson targyakat €s

osztalyokat is:

Sziletési datum

MNév !

Személy H Iskola

Osztaly

Tanar

@

Kepesites — I

Magyarazat: 1 tanarnak lehet tobb képesitése, €s egy képesitéshez tartozhat tobb targy.

Pl: Informatika tanar képesitéshez tartozhat a programozas alapjai 1, 2 €s 3 is.
Az osztalyok tanulhatnak tobb targyat tobb tanartdl is. Pl: lehet 2 programozas alapjai 1

tanar is.

Miért nem jo, ha a képesités egy trinary relacié lenne? Azért, mert akkor 1 csoport nem

tanulhatna 1 targyat tobb tanart6l?

Pl: Nem lehetne a 12.A csoportnak kettd programozas alapjai 1 tanéara.

Relacios adatmodell part 2: Szarmaztatott

muveletek

FObb megfoghato leirds: Adatokat egymashoz vald viszonyhoz valo rendelése.

PIl: Tablazat sor vagy kapcsolat is.

Példa: Az adatok kapcsolasara:

e Pointereken keresztiil navigalni, imperativ modon, ide-oda. Végeredmény

Osszeszedése.

o Osszetartozo6 adatok egymasmellé helyezése. Ugyanabban a rekordban => Ossze

vannak rendelve, van kapcsolat adatok kozott.

e Az 6sszekapcsolando értékek mellé rendeliink idegen kulcsokat, és kulcs-idegen kulcs

azonossaga mutatja a relaciot.

Ezek fogjak meghatarozni, hogy egy adatbazis kezeld rendszer milyen hatékony lesz,
milyen utasitasokat fog tamogatni.

Manapsag ezeknek a mddszereknek a kombindcidjat lathatjuk sok formaban.

Pl: NoSQL az elsé példara.

Példa: unora:

A

alma

A

korte

narancs

B

barack

korte

cseresznye

AUB

alma

korte

narancs

barack

cseresznye

Példa: kiilonbség képzésre:

A

alma

korte

narancs

B

barack

B

korte

cseresznye

A\B

alma

narancs

Példa: hanyados képzésre:
A hanyados akkor hasznos, ha a kovetkez6 didkok koziil ki szeretnénk valasztani, hogy

kik azok a tanulok, akik minden S-ben szerepld tantargyat tanulnak?

Tanulé Tantargy
Anna Matek
Anna Torténelem
Béla Matek
Béla Torténelem
Béla Fizika
Csilla Matek
Tantargy

Matek

Torténelem

E+S

Anna

E+S

Béla

Fontos 1), magasabb szintii miiveleti szekvencidk hasznélata, megjegyzése.

Példa: Természetes illesztés: Ennek eredménye: Descartes szorzat->Szelekcio-
>Projekcio.
Eddig a miiveleteink véges reldciokbol véges relaciokba képeztek, ezért zartak. Sosem

lesz végtelen halmaz a lekérdezés végeredménye.

Példa: Természetes illesztésre:

2 olyan relécid, ahol A €s B tablanak, a,a,b, valamint b,c,b és S(s) Séma: A|C : a,b és c,c.

A

Sémak:

Els6 lépésben Descartes szorzat:

R.A R.B S.A S.C
a b a C
a b b C
a c a Cc
a C b C
b b a C
b b b Cc

Most a szelekcioval valogassunk a sorok koziil. A Séma marad 4 soros:
oR.A=S.A (rx s)

1. sorban a=a, igaz, masodikban a!=b, igy tovabb:

R.A R.B S.A S.C
a b a C
a Cc a Cc
b b b Cc

Ezutéan keletkezett 2 oszlop, a természetes illesztés attributuma miatt amik feleslegesek.
(Ezek azonositottak a 2 kiilonbozé tablat).

A sorok sorrendje, mivel halmazelemek k6zombos.

RxS:
R.A R.B S.C
a b o}
a o} o}
b b o}

Az S.A sor redundans volt.

Miért fontos ez? Ez arra jo, ha 2 tablat koz0s azonos értékek alapjan ossze akarjuk

kapcsolni.

Példa: Dolgozokat 6ssze akarunk kapcsolni hogy hol dolgoznak.

Az el6z6 példaba az R kodok és S elnevezésekbdl olyan dolgozoi névlistat, ahol az adott

kodua osztalyhoz megmondhatd, hogy ki dolgozik ott, vagy, hogy mi az osztaly neve.
Az eredmény olyan lesz, hogy tartalmazni fogja az osztaly nevét, a dolgozdkat és az
osztaly bovebb neve.

A természetes illesztést lehet altalanositani: Theta Join.

Definicio: Theta illesztes: 2 halmaz descartes szorzata, €s utana egy olyan szelekcio,
ahol megkoveteljiik, hogy az 1. sémaban 1. oszlopa értéke 6 viszonyban legyen az S j.

oszlopéanak értékével. Ez a sima SQL P<I-nak felel meg.

Ennyi volt a szarmaztatott miivelet.
Fontos, hogy a Szarmaztatott miiveletek nem bdvitik azt, amit az alapmiiveletekkel el

lehet érni.

A Relacioalgebra alkalmazasa

Legyen egy adatbdzis aminek a 4 kdvetkez0 relacio séméja: A séma:
e AK
e AN
e AE

e B

Ezek formalizmusok, nem kell, hogy értelme legyen. Az AK, D ¢€s O kulcs.

Pl: Kérdezziik le, hogy a B értékeihez milyen attributumok tartoznak, ahol a D értéke X.
Lekérdezhetd, nem tudjuk igazan micsodat, mert nem adtunk rendes nevet de formalisan
le lehet kérdezni.

A D és B értékek nem tartoznak 0ssze direktbe, de van egy O attributum ami azonos
értékei mentén Gssze lehet ket O joinolni.

% D>2017.03.23. b(BIl) x bz(BZ)

Magyarazat: b-hez Bl séma tartozik, bz-hez pedig BZ sémat. Ez a lekérdezés helyes.
Az ilyen modon az adatokbol kinyert adatokhoz probaljunk meg tudést hozzarendelni.
Pontosithatnank, hogy a D,AK... attributum mit jelent.

Uj

példa:

Aru relacio:

o @ Arukod

e Arunév

o Ar

Bevetel relacio:

o Q Datum

o Osszeg

Mennyiség tabla:

. QﬁDétum

o Arukod

e Darab

Befizetés tabla:

o Q Osszeg

e Bef

Pl: A Befizetés értéke 4000 FT, ennyit hagynak a kasszdba visszajarohoz.
2017. 09. 23. utani napok esetén mi volt a bankba befizetett érték?
A formalizmust mar emberi nyelven is meg lehet fogalmazni.

A megoldas egy 2 oszlopli tdblazat lesz, X napon Y FT-ot fizettiink a bankba.
% Datum>2017.09.23. Bevétel(BEVETEL) > Befizetés(BEFIZ)

De hogyan kéne megsziilni ezt a lekérdezést? Ahol nem trivialis a szemantika, ott egy

leirast adnak altalaba gyakorlati rendszerekben.

Pl: A telekomnal tartozik cim1,cim2,cim3,cim4,cim5. Es ott le van irva, hogy a cim1 a
szerzodés koto cime, a 2. a felhasznal6 lakcime, a 3. az ... cime.

Nem trivialis, hova kiildjiik a fizetési felszolitast? Melyik cimre?

Pl: Az Oracle adatszotaraban (Data dictionary) ezek az értelmezések benne vannak.
Visszatérve, eldszOr ki kell hallani, hogy mi adja az eredményhalmaz elemeit. Ehhez

képest mik azok az egyéb feltételek, amik az eredményhalmaz értékeit befolyasoljak.
A példa kedvéért formalisan felirva mégegyszer:

B lekérdezés definicoja az, hogy 2017 szept 23. utani napok bevételei:

BEVETEL x BEFIZ -> Ennek a sémakra semmi értelme nincs, nincs adat amit
Descartes szorozni meg kivalasztani lehetne.

Szigoru formalizmus szerint hiilyeség, de belathato, hogy ez 2 relacio:

S Datum>2017.09.23. (BEVETEL x BEFIZ).

Ennek eredménye egy olyan relacio lesz, aminek az 1. oszlopaban a Datum lesz (3.

oszlopban Descartes szorzat miatt megjelenik megint, de azt kivehetjiik), a 2.-ban pedig a

bezifezések. Vetitéssel végiil D és B-re sziirni:

T Datum,Bef © Datum>2017.09.23. (BEVETEL x BEFIZ).

Fontos, a napi bevétel lehet azonos 2 napon, de a relacid logikdjdban 2-szer ez az 0sszeg
ugyanugy nem fog megjelenni. Egszer bele van irva, semmi probléma.

Mi van, ha 2 operandus reladcidban tobb attributum neve azonos? Semmi, mert az dsszes
azonos nevi attributumnak paronként azonosnak kell lennie definici6 szerint.

Fontos: Szelektalni mindent lehet, de majd késdbb irok példakot, hogy hol és mi
optimalis.

Legyen F-el egy lekérdezés, ahol: Egy A1 kodu art neve, €s hogy mennyit adtak el
2025.09.08.?

Megoldas:
™ Arunév,Eladott DB © Datum>2025.09.8. (...). Ennyit alapbol kisziirhetiink. Mar csak

azt kell megmonadni, hogy hogyan kell ezeket kiszedni 1 sorban.

Ezt az aru tdblabol lehet kiolvasni, az arikdéd mennyiség tablaval valo illesztése:

™ Arunév,Eladott DB szama ® Datum>2025.09.8. A Arukod=A1 (Aru < Mennyiség)

Reldcidalgebra segitségével mindenféle lekérdezést meg lehet csinalni.

Lekérdezések

Lekérdezésekkel imperativan eddig le tudtunk mindenfélét kérdezni.
Itt nem csak azt kell megadni, hogy mit akarunk tudni, hanem, hogy hogyan kell azokat

az adatokat elérni. Ez macera lehet.

Megoldas: Deklarativ lekérdezési modot csindlunk, nem kell megmondani, hogyan

Jussunk el az eredményhez, csak jellemezziik az eredményhalmazt.

1. Labor osszefoglalo

Az Oracle adatbaziskezelo torténete

Ezt az eszkozt a CIA kezdte el fejleszteni 1970-ben. (Helyesebben, az 6 megbizasukkal)

Nevét a kinyilatkoztatas, profécia szavakbol kapta.
Az Oracle felépitése

Az Oracle egy objektum-relacids adatbaziskezeld:
» Alapvetden kliens-szerver felépitésii

e Oprendszertdl fliggden lehetdveé teszi a tobbtaszkos, tobb felhasznaldés miikodést, és az

adatok egyidejlileg valo felhasznalasat.

e Térben elosztott rendszerként is képes miitkodni.

» A fontosabb halozati protokollokkal és rendszerprogramokkal is képes egyiitt

miikddni.
e Tamogatja a szoftverfejlesztés minden egyes szakaszat.

o Képes egyiittmiikddni ez egyes forditokkal és IDE-kkel.

TetszOleges adatmennyiséget képes kezelni (variald hatékonysaggal)
Napi 24 oras rendelkezesredllast biztosit.

Magas szinten képes biztositani az adatok integritasat.

Alkalmas 0sszetett struktarak tarolasara.

P1: Objektumok, multimégia adatok, eljarasok.
Az Oracle, mint cég aktivan tdmogatja a rendszert.

Fejlett rendszerfeliigyelet biztosithatd az Oracle Management Server ¢és a hozza
kapcsolodd Agentek segitségével. Ekkor az Enterprise Manager alkalmazas
segitségével egy tetszOleges méretli adatbazis-park adminisztralasa/tavfeliigyelete

valik lehetové.

A szerver alatt minden esetben egy adatbazist értiink. Az adatbazisban tdrolddnak a

Felhasznal6i és rendszeradatok mig a szerverpéldany a szolgaltatas futtatdsadhoz

sziikséges folyamatok és threadek 0sszessege.

Egy szamitogépen lehet tobb adatbizis is. A legmagasabb szintli névvel ellatott tarolasi

egység az adatbazis.

Logikai felépités

Az adatbazisokat tablespacekre, vagy tablahelyekre oszthatjuk, ez a legnagyobb logikai

tarolasi egység.

system: Ide jonnek a rendszer informacioi.

Pl: Adatszotar

sysaux: A kiegészit6 tablahely a system mellett. 10g verzidban jelent meg. Ide kertilt
az adatbdzis néhany olyan funkcionalitasa, mint a LogMiner vagy Data Mining

csomag.
rbs: Az adatbazison végzett miiveletek napldja.
temp: Atmeneti csomagoknak van fenntartva.

tools: Mas alkalmazasok altal hasznalt minta tarhely.

users: Az altalanos Felhasznal6i mintatarhely.

Definicio: Database link: olyan szinonima, amelyen keresztiil nem objektumokat,
hanem adatbazisokat érhetiink el. Emlitettiik, hogy egy szerverszamitogép tobb
adatbazist is tartalmazhat, sot lehetnek akar elosztott, azaz tobb, kiilonb6zo
szamitdgépen tarolt, azonban adatait tekintve 6sszefliggd adatbazisok is. Ilyen esetekben

sziikséglink lehet kapcsolddasi pontok definidlasara.

Definicio: Data dictionary: csak olvashat6 tablak és nézetek gylijteménye, amelyek a
rendszer mindenkori allapotat rogzitik. Ennek megfeleléen megtaldlhaté benne, hogy
milyen felhasznaldk vannak a rendszerben, azok mely objektumokhoz férhetnek hozza;
milyen kényszereket kell érvényesiteni az egyes mezdkre; milyen alapértékek vannak
beallitva az egyes oszlopokra; mennyi helyet foglalnak az egyes objektumok, mennyi
hely van még szabadon; ki, mikor Iépett be az adatbdzisba és mit modositott vagy nézett

meg stb.

Definicio: Cluster: Azonos kezelési vagy hozzaférési modot igényl6 adatok egyetlen

csoportos, fizikai helye.

Adattipusokrol roviden

e CHAR(n): Egy n méretl string, ha nagyobb stringet akar valaki belerakni, mint n,
akkor levagja az n+1 és utana 1év0 karaktereket. Ha kevesebbet, akkor szokozokkel

kitolti a maradék helyet. Ha n nincs specifikdlva akkor n=1-et hasznal.

e VARCHARZ2(n): Valtoz6 hossziisdgo+u sztringet tud tarolni, olyan mint a char, csak

kisebb inputnal nem t6lti ki a maradék helyet.
e NCHAR(n),NVARCHAR2(n): A CHAR ¢és VARCHAR unicode valtozata.

e CLOB: Nagymeéretl szovegek tarolasara alkalmas tipus. Amennyiben fentieknél
nagyobb méretben szeretnénk karakterfiizért tarolni (nem kell megadni felsé korlatot),
akkor érdemes a megfeleld mez6t CLOB-nak (Character type Large OBject)
definialni. A CLOB-nak is van maximalis mérete, de ez kelléen nagy: elméletileg 4
gibiblokk is lehet.

e Number(p,s): Egy szamot tarold adattipus, a p a szam 6sszes jegyének szama, az s

pedig az, hogy a tort vesszé mogott mennyi jegy legyen p-bol.

e DATE: Datum tarolasara alkalmas adattipus. Az Oracle valamennyi olyan ddtumot

képes tarolni, amely i.e. 4713. januar 1. és 1.5z. 9999. december 31. koz¢ esik. Hét
mezObol all: szazad, év, honap, nap, 6ra, perc, masodperc. Sok szarmoztatott

adattipusa van.

e ROWID: Az adatrekordok egyedi logikai ¢és fizikai azonositoja. Minden tabla
rendelkezok ROWID segédoszloppal

e UROWID: Az UROWID tipus olyan rekordok logikai egyedi azonositdjat tarolja,
amelyek fizikai helye mas rekordokon végzett miiveletektdl, vagy az Oracle adatbazis-
kezel6 hataskorén kiviil esd koriilményektdl fligg. Az ilyen rekordokat tartalmazo
tablakban a ROWID nevii segédoszlop UROWID tipusu. Az un. index-szervezésl
tablakban (Index-organized Table, IOT) a rekordok az indexek levelében tarolodnak,
amelyek 1j rekordok beszurasakor/torlésekor, meglevok modositasakor athelyezésre
keriilhetnek mas fizikai blokkba. Az index-szervezésii tablak rekordjainak UROWID
tipusu azonositdja mindaddig valtozatlan marad, amig az elsddleges kulcs érteke
valtozatlan. Az Oracle adatbazison kiviil tarolt tablak rekordjainak azonositoi szintén
UROWID tipusuak

Szinonima (Synonim): egy tablara, nézetre vagy szamlalora tobb név is megadhat6 a
szinonimak segitségével. Lehetdségiink van tehat roviditeni vagy atlatszoéva tenni az
egyes objektumok tarolasi helyét. Van nyilvanos (public) és rejtett (private) szinonima is.
A nyilvanos szinonima mindenki szdmara hozzaférhetd, mig a rejtett szinonima csak a
felhasznalok egy meghatarozott korének érhetd el. A nyilvanos szinonima létrehozésa ¢és
eldobasa specialis jogokhoz kothetd.

Index (Index): adatokhoz val6 hozzaférést (altalaban) gyorsit6 eszkdoz — az Oracle-ben

alapesetben egy B* fa.
Fizikai felépités

Egy datafile-ban tobb table is lehet, €s egy table tobb datefile-ban is lehet egyszerre.
Fizikai felépités: Segment->Extent->Data block.

Rollback szegmens (rollback segment): minden megvaltoztatott, de még nem committalt
érték, elem adatat tarolhatjuk itt. Az Gjabb Oracle verzidkban (9-t6l felfelé) ez a

szegmens nem létezik.
Adatszegmens (data segment): minden tablaban megtalalhat6 adat egy ilyenben foglal

helyet. Indexszegmens (index segment): a kiilonféle indexek hatékony tarolasara

alkalmas szegmens. Ideiglenes szegmens (temporary segment): minden miivelet
veégrehajtasahoz az Oracle igényelhet egy ideiglenes munkatertiletet, amelyet sikeres

befejezés utan eldob.

Rendszerfeliigyel6 folyamat (system monitor, SMON): a kiilonb6z6 rendszerhibak utani
helyreallitast végzo folyamat. Az Oracle inditasakor és befejezédésekor automatikusan
elindul. Mas esetben, szabalyos 1d6k6zonként ,,felébresztik”, hogy megnézze, sziikség
van-e ra. Ilyenkor az ideiglenes szegmensek mar nem hasznalt adatait torli. Folyamat-
feliigyeld folyamat (process monitor, PMON): mig az SMON a rendszerhibdk utan, addig
a PMON a felhasznalokkal kapcsolatban allo szerverfolyamatok hibai utan ,,takarit”. Ha
egy ilyen folyamat nem hajtodik teljesen végre, akkor a PMON a felhasznalo megfeleld
tranzakcidit, zarait és egyeb foglalt erOforrasait felszabaditja. Adatbazis ird folyamatok
(database writers, DBWn): a sziikséges, modositott adatokat irja ki az SGA-bdl a
hattértarra, a megfeleld adatfajlokba. Legfeljebb 20 ilyen folyamat miikddhet egyszerre.
A Net8 protokoll elfedi a kiilonb6z6 lehetséges haldzatokat és programozoéi feliileteket
(viszony, és megjelenitési szintii protokoll). Igy a Net8 illeszthet6 pl. IPX, SPX, IPv4,
[Pv6, TCP, TCPS halozatokra egyarant.

Relacios adatbazisok kalkulus alapu lekérdezése

Kalkulusok adottak, cél relacios Adatbazis Deklarativ lekérdezése. Csak az
eredményhalmazt fogjuk jellemezni azzal. Az, hogy milyen sorrendben érjiik el az
adatokat, majd rabizzuk egy optimalizal4si modra.

Fajtak:

e Sorkalkulus
e Oszlopkalkulus

Mindkettd elsé rendii formalis nyelv relaciok leirdsara.

Azért, mert az eredményhalmaz is relacio lesz. Ez azért jo, mert nem kell a miiveleti

sorrendet megadni, csak a kivant adatokat megadni.

Sorkalkulus

Definicid: Sorkalkulus: Egy olyan formalizmus, melynek elemei megengedett
szimbolumok lesznek. Ezekbdl a szimbolumokbol atomi formulak lesznek eldallithatodl,
ezekbdl szabalyok szerint formulalkat allithatunk el6, a formulakbol pedig méar
(Kalkulus)kifejezéseket tudunk eldallitani. Ezekkel mar deklarativan tudunk
lekérdezéseket csindlni.

Szimbolumok:

* (&)

o +-

« ES,NEM, VAGY

e Sorvaltozok s"N[j] ha j KISEBB N, amiknek N kompnensiik van. j A kivalasztott

komponens.

* Relécids konstansok: R*N , ez egy adatbazis tablanak feleltetheté meg. Lekérdezéskor

ezeknek méretét dllandonak tekinthetjiik. N: hdny halmaza van

o Exisztencialis és univerzalis kvantorok. (Minden, Osszes, Létezik) 3, V

cl,c2...cn skalarok.

Definicio: Atomi formula: Jelelolje R*"N(s”N). Lehet egy sorvaltozé és relacios
konstansok. Ekkor a sorvaltozok komponenseit 6ssze tudjuk hasonlitani vagy massal,

vagy konstansokkal.

Példa:

RAN(s"N) Egy relacién N elemii sorvaltozo.

s”N[i] 6 t"N[j] (Téta= Valamilyen hasonlitasi szabaly)

R”N(cl1,c2,cN)

RAN(s"N) 0 cl

Formulak

—

Atomok, Atomi formulak Kifejezesek

Definicio: Formula: Valami akkor formula, ha SN kotott valtozo. Az atomi formulak

mind formula. A formuldkat egymassal logikai miiveletekkel 6ssze lehet kapcsolni.

Létezik W 1 és ¥ 2, amik formuldk akkor W 1 AW 2, Y 1 VW 2 ¢és —~ YV 1 is formulak

lesznek.

Ha van egy Y formula t szabad valtozoja. (Ha 3 W(t) ahol t szabad valtozo) Akkor:
ERR L0

o (V1) ¥()

Is formulak. Es ezekben t mar kotott sorvaltozéd

IDeﬁnici(): Szabad: Egy valtozé addig szabad amig nem vonatkozik ra kvantor.

IDeﬁnici(): Kotott: Egy valtozo kotott ha vonatkozik ra kvantor.

Pl: Az egyik véltozora egy kvantort alkalmazunk, akkor a valtozé kétott lesz. Kvantor
keésobb lesz definialva.

Definicio: Kifejezés: S"N W SN Sorkalkulus kifejezés, ha ¥ kivezetett valtozo az
egyetlen a szabad valtozoja, a tobbi valtozo kotott. Ez a szabad valtozd S*N.

Egy formalis kifejezés:
{"(N) [("(N))

Ebben a halmazban azon t értékek lesznek benne amelyekre ez a ¥ formula igaz lesz.
Ez akkor fog értelmet nyerni, ha konkrét értékeket rakunk bele ezekbe a formulékba.
Logikai muveletet csak akkor lehet evaludlni, ha tudjuk a konkrét értékeket.

Példa: R(5) (s™(5)) A s™(5)[2] =9 = Ahol s 2. eleme =9

Ugyanez full formula: { s*(5) | R*5) (s"(5)) A s*(5)[2] =9 } — kovetelmény s7(5)
egyetlen szabad sorvaltozonak kell lennie. Ha tobb van a | el6tt akkor azoknak mind
kototteknek kell lennie.

Mit lehet ezzel kezdeni?

Interpretalni kell, konkreét értékekkel.

Egy értelmezés:

Vegyiink egy A szamhalmazt, amibe benne van a szamitogéppel dbrazolhat6d dsszes szam.
CEA

RA(N) < A*N)

s"(N) € AA(N) (Az A n-tagli halmazait veszik fel)

Igazsagértékek hozzarendelése:

R”n (s”n) csak akkor ad igazat, ha s"n helyettesitési értéke benne van R"n-be. s"n[i] 0

t*n[j] csak akkor igaz, ha teljesiil r4 a 0 matematikai reldcio.

Definicio: Formalizmus interpretdcioja: Az a leiras, ahol megadjuk, hogy egy formula
konstans ¢és nem konstans valtozok helyére konkrét értékeket irunk. Ekkor a formulakat

mar el tudjuk végezni.

Ennek eredményéiil a formulakhoz igazsagértékeket tudunk hozzarendelni, gy, hogy a
formulakat aritmetikailag kiértékeljiik. (Evalualni)
A formuldk eredménye a formuldkhoz igazsagértékek hozzarendelése.

E végeredmény egy olyan halmazt hatdroz meg, ahol a halmaznak az elemei ahol a

halmaznak egy olyan M komponensii sorvaltozok az elemei, ahol a halmaz elemeire

kiértékelve G (formulat) feltételt akkor ez a kiértékelés igaz értéket fog adni rajuk.
Formulak logikai meghatarozasa

A W1 A Y2 pontosan akkor igaz, ha a W1 és a W2 is igaz.
A WY1 Vv Y2 pontosan akkor igaz, ha a W1 vagy a Y2 is igaz.
A — Y1 pontosan akkor igaz, ha a W1 hamis.

A (3 t) ¥(t) pontosan akkor igaz, ha van olyan helyettesitési értéke t-nek, amire ez a ‘P(t)
igaz (Y masik értékei mellett)

A (V t) (1) pontosan akkor igaz, ha minden helyettesitési értékére t-nek ez a ‘Y(t) igaz
(¥ masik értékei mellett)

Ezek alapjan a {t"n | ¥(t"n)} egy olyan relaciot hatdroz meg, ahol a t n-esei a Y-t igazza

teszik.
Tipp: Az egy szamértéket egy olyan relacionak tekintjiikk aminek 1 sora €s 1 oszlopa van.

Tipp: {t"1 | 1=1} visszaadja a teljes érték halmazt. (ami a | el6tt van az azt mondja meg,

hogy a kimeneti halmaznak mennyi eleme lesz)

Tipp: {t"2 | BEVETEL2(t"2)} visszaadja az Osszes t értékpart, ami benne van a
BEVETEL-ben.

Direkt

példa:

e 2020 november 17.-e utani bevételek: { t*2 | BEVETEL 2(t"2) A t*2[1] = 2020
november 17.} Ttt elész6r kinyerjiik azokat a t-ket amik BEVETEL beliek és aztan

szlirjiik. (A bevételben a sor 1. elemei a datumok)

o {t"2 | BANKBA2(t"2) A (3 u) BEVETEL"2(u”2) A u2[2] = t*2[1] A u”2[1] = 2020
november 17. } Itt egy join-ra van példa, kikeressiik az u-kat €s az mentén t-t sziirjiik,

hogy 1 datumban mennyit raktunk be a bankba.

Gondolkozzunk el, hogy mennyire torvényszerii az, hogy akarmilyen relaci6 algebrai
kifejezést sorkalkulus kifejezéssel is ki lehet fejezni?

Ez trividlisan igaz.

E relécio algebrai kifejezés allitsa el6 konstans R halmazt.

Sorkalkulusba csak ennyi: {t | R(t)} Ha tudjuk elére az outputot akkor konnyti.

De igy mar nem trivialis: Tétel: Minden reldcidalgebrai kifejezésbdl tudunk
konstruktalni egy sorkalkulusi kifejezést amely ugyanazt a relaciot allitja el6 mint a

relacioalgebrai kifejezes, €s benne csak azok a konstans relacidk szerepelnek melyek a

relacioalgebrai kifejezésben is benne van.

Bizonyitas:

Teljes indukcidval, azt kell feltételezni, hogy az n-edik 1épésben E1 = {t1*(N) |
Y1(t1M(N))} és E2 = {t2*(N) | W2(t2(N))} még nem biztonsagos kifejezések. Ezutan

megvizsgalando, hogy az 5 alapmiiveletre visszavezethetdek €s adhatoak-e ezeknek

biztonsagos kifejezései.
Vajon forditva igaz-e?
Nem igaz, bizonyitas: {t | ~ R(t)} (Ez egy Uigynevezett nem biztonsagos kifejezés

Héat ezt baromi nehéz lenne megcsinalni relacidalgebraba.

Adatbazis nézetének kibovitése

Eddig kaptunk 2 inputot:

e Kaptunk egy vilag egy morzsajat, valami valakinek a fejében van, és ezt szeretnénk

adatokra leképezni. Nem a teljes adathalmazt csak bizonyos adatokat.

e Megismertlink formalis adatmodelleket.

Példa: Objektum orientalt, relacios...

A relacios adatmodell példaul a miiveletek miatt egy keretrendszert biztositott. Az
adatmodell neve egy formalizmust diktal amit mi majd egy iizleti produktumot tudunk

leképezni.
(Formalizmus+szemantika.)

Definicio: Elomodell: llyen az ER modell, a vilag egy darabjabol egy bizonyos

szemantika alapjan késziilt modell.

Ezek kellenek ahhoz, hogy tetszdleges adatokat tetszdlegesen rendszerezve lehessen
tarolni.

Szemantika

Eldmode o Relacios
(ER) v madell
Formalizmus Konkrét (iizleti)
adatmodell

Ez ER vilagban 2 alapvet6 elem van:

e Egyedhalamzok

Pl: {alma, korte, narancs}

e Kapcsolathalmazok

PI: {ide jar, innen kapja a postat}

Egy ER vilagban sémat ugy lehet késziteni, hogy rahtizunk egy relacidt bizonyos

attributumokkal, melyek 1 konkrét sort képeznek le.

Pl: Ember(név.¢letkor,TAJ szam)
Legyen egy R ternaris relacio, ami A, B, C egyedhalmazokat csatol dssze.

Al Ad

relacids

A N A(A1,A2,_An)

Ezeknek az A,B,C[1,2...n] halmaz elemeinek kell egy sémat definidlni.

De hogy nézzenek ki az elem sémainak attributumai?

Legyen egy A1,B2,C3 elem, ¢s ezeknek jelezni kell, hogy Osszetartoznak.
1 elemet gy tudunk azonositani, hogy al,a2...an attributummal hivatkozunk ra, ez egy
Ala].-ik elemét fogja azonositani.

Ez alapjan azonositsuk a B €s C halmaznak egy elemét:

al..an,bl...bn,c2...cn

Ez azonositasra jo, de nem a legjobb. Jelzi, hogy az adatok egybe tartoznak de
redundéansan tarolja dket.

(Lasd: Késobb funkcionalis fliggdség €s normalizalas)

Nem kell az egyik egyed 0sszes attributumait felsorolni, van olyan, ahol 1 attribatum is
egyedileg megkiilonboztet minden tagot. (Ismétlésnek ez a kulcs)

Legyen A, B és C kulcsai A[1], B[j] és C[k].-ik attribatumai.

Ekkor jelolhetjiik R'(A[1],B[j],C[k]). Itt 1athato, hogy ez elégséges annak a jelzésére,
hogy egy A, egy B és egy C beli elem valamilyen attriblitum mentén kapcsolodik.

De ezek nem a relacioban kulcs, mert ezek az A, B és C sémaban kulcs. Ez egy idegen

kulcs.

RE_RE

A c

A-beli elemet B-beli elemet C-beli elemet
azonsit azonsit azonsit

| | |
: j | I | |
(A1....An, B1....Bm, C1....Ck)

Definicio: /degen kulcs: Egy kapcsolotabla vagy egy egyedi kulcs, ami 6sszekapcsol N

tabla mentén példanyokat.

Csinaljunk egy kapcsoldtébla:

Kapcsolat
azonositok

al,a2...an b1,b2...bn | c1,c2...cn

Héat ez igy nem a legjobb. Nem ad egyértelmiiséget. Lehet N-to-N-es viszony is.
Mas tipp:
Ha A-bol csak 1 B értéket lehet elérni, akkor vegyiink fel A-ba egy attributumot, ami

alapjan egyértelmiien lehet azonositani egy B beli elemet.

Pl: Ha B emberek, és B-ben van egy név, akkor A-ban felvehetiink egy ember név nevii

attribitumot. Igy az A-beli elemek tudni fogjak, hogy melyik B tartozhat hozza.
:: ; A(A1.__.An,Bj1)
A B
B(B1...Bm)

Fizikai adatszervezeés

A lényege, hogy az adatbaziskezeldnk egy operacios rendszer felett iil, mint alkalmazas

¢s hasznalja az OS fijlrendszerét.

IDefinici(): Fajl: Egy olyan konstrukcio, amely képes adatokat perzisztensen tarolni.

Figyelembe kell venni, hogy rekord-szer struktarakat akarunk a fajlokba tenni.
I[lyenkor blokk-orientalt hattértarat feltételeziink.

De mit is jelent ez pontosan?

Hogy nem karakter szinten tudjuk bevinni az adatokat, hanem blokkositva, akar 4096
darabot is, ha 1 blokknyi adat = 4096 egység.

Mindig konkrét blokkok utaznak az operativ €s a hattértar kozott.

Az operativ tarbol mérndki becsléssel (mostani technologiakkal) altalaba 4-5x gyorsabb
az adat kezelése.

4 alapmiivelet a rekordszerti struktirakkal:

o Keresés

Torlés

Beszuras

Moébdositas

blokk-orientalt hattértar:
e HDD

e SSD

Ezeket ilyen modon lehet majd kezelni:

° H_eap (nem aC-s }ME)

Definicio: Heap: Ez egy formaja a f3jl allomanyok szervezésének. Ez akkor jellemzd,
ha semmilyen segédstruktirat nem hasznéalunk rekordjaink taroldsahoz. Vesziink 1
blokkot minden rekordnak.

A blokkokban mindig csak egész szamu rekordot helyeziink. Szdval 1 rekord max 1
blokkon lehet, ¢s mondjuk 1 blokk X rekordot képes tarolni. A blokk mérete (2025-ben)
tipikusan 512byte-64KB lehet.

Blokk:
Blokk tarolo
Head i
egysége
Lancolas, adatok a
blokkokrol, mennyi b1,b2...bn

szabad, stb...

A blokkméret adott, és a bl,b2...bn rekordok egyforma hosszuak.

Ha ezeknek adott a mérete, akkor az esetek tobbségebe a blokkokban lesz majd mindig

valamennyi byte, amit mivel adott mennyiségli egész mennyiségii rekordot tarolunk,

nem tudunk felhasznalni.

Ezt le kell nyelni.
Egy rekord igy nézhet ki:
Mez6 2
.. | (hosszabb, .
Mezo6] Mez6
Header 1 mondjuk 3
1024 hosszGi |
string)

Miveletek heap-en: (Egy ember sémaval)

e Keresés: Ki akarjuk az egyik rekordot olvasni, ugy, hogy tudjuk, hogy Gipsz Jakabot
keresstik. Akarjuk, hogy hanyas laba van. Ezt faradtsagosan fogjuk megtalalni. E16sz0r
meg kell talalni, hogy a rekord melyik file-ba van. Valamilyen médon ezt azonositani
kell. (Az adatbaziskezeld ezt megmondja) Ha ismerjiik ezt a file-t akkor az OS-nek
mondani kell, hogy adja oda az 1. blokkot. Az 1. blokkmiivelet baromi hosszl 1d9 lesz,
mert még nincs a hattértarba. Ezek utan a rekordokat ki kell keresni. De honnan
tudjuk, hogy a rekordban mi a kulcs? Ez a metaadat tarban benne lesz definiélva.

Az alapjan ki tudjuk szdmolni a kulcs hosszat, offsetjét és megnézhetjiik, hogy
megegyezik-e Gipsz Jakabbal, ha egyezik, akkor jo. Ha nem akkor megyiink a 2.
blokkba. A 1ényeg az, hogy egy exhaustive keresést kell blokkonként és rekordonként
végezni. Mindegyiket meg kell nézni. A blokkon beliili keresés ideje elhanyagolhato.
Ez linearis keresés, ha N blokk van és M rekord, akkor minimalis blokkmuveletszam:
1, atlagosan: (1+N)/2, ez O(N) algoritmus lesz.

Az Oracle is ezt hasznalja

Pozitivumok:

o Olykor nagyon nagy overheadja lenne, ha extra adatok alapjan azonositanank €s

keresnénk a rekordokat.
Negativumok:
o Lassu.

e Torlés: Eldszor ki kell keresni, ez O(N) (N = blokkok szama). A rekordok elején van
egy bit, hogy térdlve van-e. Ha ezt 0-rol 1-re rakjuk akkor jelezziik, hogy ezt a blokkot
tordltnek tekintjiik és ide majd egy masik blokkot vagy rekordot tudunk tarolni. Torlés

ténye nem véglegesedett ezzel, mert az adatbazis diszkrezidens €s csak az operativ
tarba "toroltiink". Nem véglegesitettiink semmit.

Ezt a rekordot vissza kell irni a hattértarra, de 1 bitet nem tudunk irni, mert blokk-
orientaltan miukddiink. 1 bit miatt lehet, hogy 32KB-ot irunk a disk-re. Visszairas: +1
blokkmiivelet. O(N)

* Beszuras: Kell vizsgalni egyediséget? Ha igen és nincs segédstruktirank, akkor végig
kell nézni az 0sszes blokk 6sszes rekordjat, ez mar alapbol O(N) N blokkméretnél a
keresés miatt. Meg kell keresni, hogy mar van-e benne. Ezt mas mddon is lehet
biztositani (ROWID vagy egy auto-increment kulccsal). Ha nincs benne, akkor lehet
irni az uj rekordot. Ezt egy lres helyre vagy egy fajl végére be lehet irni. Az tires
helyeket, ha volt esziink még az el6z06 kereséskor kijegyeztiik az iires helyeket.
I[lyenkor a beszlras +1 blokkmivelet + keresés: O(N)

e Modositas: Gipsz jakabnak megndtt a laba, modositani kell. Ilyenkor ki kell keresni és
irni kell, +1 blokkmiivelet + keresés: O(N). Az is lehet, hogy a nevét valtoztatta meg.
Ilyenkor ki kell keresni, hogy van-e mar ilyen, ettdl fiiggetleniil ugyanugy O(N).

Latszik, hogy minden a keresés sebességétdl fligg. Ha gyorsitani akarunk akkor a
keresést kell felgyorsitani.

Csavar erre: hasznaljunk hash szervezést!

Definicid: Hash: Egy olyan szervezési forma ami hasznal egy hash tabla
segédstruktirat. Ezek pointereket (mutatokat) tarolnak, amibe B szdmu bejegyzés van.
(vOodros hash-t hasznalunk elsésorban). A H hashfiiggvényiink olyan, hogy leképezi a
rekordok helyét [0,1 (max fajl méret)] intervallumra. Itt most a blokkokhoz egy
segédstruktirakon keresztiil tudunk hozzaférni és a blokklancokat elérni. (A vodrés hash
miatt) A vodros lancolast a blokkok header adataban el tudjuk lancolt lista formécidban
tarolni (el6zo6 blokk, kovetkezd blokk). Ha a H hash fliggvény egy k kulcsértékii
rekordot a H(k) helyre képez le, akkor a hash tabla megmondja, hogy a k kulcsértékii

rekordnak melyik vodorbe kell lennie. J6 hashfiiggvénynél a vodrok egyenlegesen

fognak ndni.

1 vodorben ekkor varhatoan N/B blokk lesz. Ez keresési idoben, ha B elég nagy
csokkenest fog eredményezni. Ha B=N, akkor a keresés 1 blokk miiveletet fog (perfekt
hash fiiggvénnyel) igénybe venni, €s igy a keres€és minimum 1 blokkmivelet: O(1). Ez a
leggyorsabb blokk-orientalt hattértarban. Gyakorlatban, ez az operativ tar méretétol fiigg,

B nem lehet nagyon nagy. 1 mutatd 1 bajt (minimum), gazdasagosan az operativ tarbol

egy milliomutatd 8MB hely. Szoval kevés. Egy nagyon alap RAM 4GB méretll. Ez

ennek RAMnak a toredéke. Ezek elég olcsdak igy nagyon sokat nyertiink nagyon olséan.

Viadar Vadadr kataldgus
0 o] Blokk 1 > Blokk 2
1 o
0 [Blokk 3
0
0
0
0
B1 0)l Blokk 4 > Blokk 5

Muveletek a hash-el:

Keresés: O(N/B) 1. Megkeressiik a rekord Kulcsat, majd h(K)-t kiszamitjuk és a vodor
h(K).-adik bejegyzésebdl kiolvassuk az adatot. (Ha benne van az adatbazisban akkor
csak itt lehet)

Torlés: O(N/B) Lasd: Heap miivelet +- a jobb keresés. Itt elég csak a torolt bitet
atallitani.

Beillesztés: O(N/B) Lasd: Heap miivelet +- a jobb keresés.

Modositas: O(N/B) Lasd: Heap miivelet +- a jobb keresés.

Az indexelésrol

Definicio: /ndex: Ennek a szervezésnek az a specialis tulajdonsaga, hogy
blokkszervezésii és ebbe az dllomanyba index-rekordokat tarol. Egy index-rekord egy
kulcs értéket és egy mutatot tartalmaz a rekordra. Az index allomany a kulcs érték

szerint rendezett lesz (mindig).

Lehet itt mar binaris keresést hasznalni.
Muveletek a hash-el:

Keresés: O(log2(N+1)) Egy adott kulcs érték alapjan bindris keresés. Mivel

rendezettek kulcs alapjan a rekordok igy hasznalhatunk bindris keresést.

2 féle indexelést ismertetiink:

o | Definicio: Ritka index: Joval kevesebb az index rekordok szama az aktualis rekordok

szamanal.

e | Definicio: Siiri index: Az index rekordok szama majdnem megegyezik a rekordok

szamaval.

IDeﬁnici(): ISAM: Az index rekordok szama megegyezik a rekordok szdmaéval.

Felmertil a kérdés, hogy ha kevesebb az index rekord, akkor honnan a fenébe tudom,
hogy melyik rekord hol van.
Megoldas: A blokkokban is a rekordokat is kulcsérték szerint rendezetten kell tarolni.

Példa: Olyan mint egy nyelvi szétar, ha tudjuk, hogy rendezettek, akkor a Zebra
jelentését nem a konyv elején keresem, hanem a Z betiis szavaknal.
Az ISAM-kor a keresés:

o Keresés: O(log2(X)) Ahol X az index rekordok kozott ugralasanak szama.

Definicio: Forumla doménje: Eormalisan a DOM(Y) = { olyan halmaz, aminek a
formuldban talélt konstans relacioknak és értékei (skalarjai) a tagjai} Ilyen konstans,

ami

P1: Szeptember 15.-es

Definicio: Biztonsagos sorkalkulus kifejezések: Egy sorkalkulus kifejezés biztonsagos,
ha a tartalmazott elemeit egy az interpretacidos halmaznal kisebb halmazra megszoritva
is értelmes eredményt kapunk. ez a formula doménje. Ez azon értékek halmaza, amik az

adatbazisban ténylegesen reprezentalva vannak.

Pl: Az ember tabla életkor mezdje. Formalisan: Az adott valtozokhoz tartoz6 megfeleld
helyettesitési értéket keresiink. Egy formula biztonsagos akkor, ha a ‘¥(t) formuldban a
szabad valtozot igazza tev Osszes t helyettesérti érték € DOM(WY). Az 6sszes Q(u)
helyettesitési értek DOM(Q).

Tétel: Minden biztonsagos sorkalkulusi kifejezéshez taldlhato egy relacioalgebrai paros.

Ez forditva is igaz.

Oszlopkalkulus

Csak a hasznalati formalizmusban kiilonbozik.

Elemei:

s”(n) helyett X1,.. Xn

R”(n) (t*n) helyett R"n(X1,X2,...Xn)

Xi 0 Xj

R”n(cl,c2,...cn)
o Kifejezés: {X1,X2,Xn | Y(X1,X2,Xn)} lehetnek kotott konstansok.

Mintaképpen itt van par lekérdezés oszlopkalkulussal:

e Szeptember 15.-1 arbevételek: { x,y | BEVETEL(x,y) A x > 2020-09-05} (X = datum,
Y = bevételek), beszédes nevekkel jobb:

e Szeptember 15.-1 arbevételek: { datum,bevetel | BEVETEL(datum,bevetel) A datum >
2020-09-05}

e [tt egy masik: { 0sszeg, befizl BANKBA(Gsszeg, befiz) A (3 datum)
BEVETEL(datum, osszeg) A datum = 2020-15-20 }

Ez a lekérdezéseknek egy elegansabb formalizélasa.

2. Labor fontosabb fogalmak

Ezeket a fogalmakat a labor el6tt érdemes ismerni:
e Adatbazis séma

e Relaciés séma

e EER (Extended ER) model

e Fogalmi adatbazis (logikai)

e Relacio6 fokszama

e Relacioalgebra

* kulcs

Tipp: A relacidalgebrai szelekcio az SQL WHERE-clausenak felel meg, mig a Projekcid
a SELECT-nek.

Fizikai adatszervezeés 2.

Egy sajatos, limitalt modellben dolgoztunk. Nem mindenre jut id6, nem mindent irtunk
le rendesen.

Igy kell az adatszervezést (fizikait) elképzelni: Az adatbazis szeretne valamit térolni:
"Pliz daddy oprendszer, kérek blokkot!". Ezek utan valamennyi 1d6 utan az adatblokk

megerkezik.

A lényeg az, hogy ezt a varast ki tudjuk hasznalni addig mésra.

A nem felejtd hattértar kezelése sosem kozvetlentil valosul meg, egy fajl interface
alapjan lesznek az adatok tarolva, eldirva.

Amikor a 3 rétegli modellrdl besz¢Eltiink, akkor az alsé réteget még fizikai struktiranak
hivtuk. Most mar alloméanyszervezésrdl is beszélhetlink. Csak azt akarjuk megmondani,

hogy az adatokat hogyan, és milyen adatokat taroljuk el, nem akarjuk azt megmondani,

hogy hol.

Nem trivialis, hogy a fajlokat milyen sorrendben taroljdk az adott als6 rendszerek.

A fajljaink blokkokat tdrolnak (egész szdmu mennyiséget), a blokkok pedig rekordokat.
Ezen feliil fontos megjegyezni a 3 elébbi megismert modszert.

Emlékeztetd: A hash elég hatékony mddszer tud lenni bizonyos tényezok mellett, 1asd
fentebb.

Az indexeket képzeljiik el valamilyen hattértaron elhelyezkedd struktiranak.

Ha az indexek rendezettséget biztositanak, akkor hiba linearis keresést hasznalni.
Hasznaljunk bindaris vagy interpolacios kereséseket!

2 féle index van, a ritka index és a stirti index. Ha mi sokkal kevesebb index rekordal
akarunk sokkal nagyobb halmazba keresni, akkor ide ki kell valamit talalni.

Megoldas: Az adatallomanyt 1s kulcsérték szerint kell tarolni és rendezni. Ez az ISAM
keresés, alapvetéen log2(M)-el lesz aranyos, ahol az index allomany blokkjainak a szama
az M. Ahol definicio6 szerint az index alloméanyban az indexrekordok szama megegyezik
az adatalloméanyban 1év6 rekordok szaméval. Tudjuk azt is, hogy ha egy meghatarozott
helyen egy index alapjan nincs keresett adat, akkor tudjuk, hogy mashol se lehet, mert az

index akkor azt mondta volna.

Példa: Egy szotarba addig keresilink, amig megtalaljuk azt a sz6t, ami kisebb betiivel

kezdddik lexografikusan, mint a keresett sz6. Ha ezt megtalaljuk, akkor tudjuk, hogy az

utan lesz a keresett szo.
ISAM-al beszuras

Nem trivialis, olyan, mint ha egy teli szotarba akarunk adatot berakni.

Mit lehet csinalni? Azt az oldalt ahova be kell szarni, ki kell tépni, kell venni 2 oldalt,
mindegyikre a felét rarakjuk az eredeti lapnak, igy lesz hely.

Ez a blokkhasitas. Ekkor az indexallomdanyt is frissiteni kell. Keletkezett egy 0j blokk,

ennek keletkezett egy 1) index rekordja, ezt az indexet be kell szarni az 4lloményba.

Fontos: Az indexnek mindig rendezettnek kell lennie. Ha nincs hely az indexallomdanyba,

akkor itt is block splitet hajtunk vége. Ezek utan frissithetjiik az index alloményt.

Torlés ISAM-al

Trivialis, be kell allitani a torolt biteket. Viszont ha sok a torlés, akkor a régi adatok, amik
mar toroltek foglaljak az indexeket €s a tarhelyet. Az indexstruktarat is frissiteni kell

idénként vagy mindig.

Feloldas: A szomszédos blokkokban hany olyan blokk van, ami még ¢1? Ha kevés, akkor
block splitteliink. A még éléeket egy 0 oldalra rakjuk, a tobbit kidobjuk. Igy az
indexallomanyt is frissithetjiik. Ekkor ennek a mérete is fog csokkenni.

Ennek a részletei mar implementacios kérdés.
Modositas ISAM-al

Ha a modositas a kulcsot is érinti, akkor baj van. Ilyenkor a célszerti eljaras a torlés €s

beszuras.

Keresés ISAM-nal

Indexrekordok

h

-

Indexrekordok Indexrekordok
¥ ¥
Indexrekordok Indexrekordok
Adatrekordok

Itt az indexek kozott a binaris keresés elég optimalis. Viszont a log2 keresés is noveli a

tobbi parancsnak is a végrehajtasi idejét.

Mit lehet ilyenkor csinalni? Eszre kell venni, hogy a fijlok rendezettek. Azokban is lehet
keresni és sokkal gyorsabban is. Az embernek 1ényegesen kevesebb blokkot kell 4tnézni.

Ezt el lehet siitni az index rekordokra is. Csinalni kell egy index rekordod ami az el6z6

index rekord egy blokkjat cimzi meg.

Ezt el lehet siitni, Iényeg az, hogy a végén 1 blokk legyen, ekkor ebbdl egy fa struktura

lesz:

Indexrekordok

1. |

Indexrekordok Indexrekordok
¥ ¥ ¥
Indexrekordok Indexrekordok
L £ L
Adatrekordok

Ekkor az 1 maganyos blokk a gyokér, az adatblokkok meg a levelek. Innentdl kezdve a
keresés logik4ja mar meg fog valtozni.

A keresés innentdl abbol fog allni, hogy mindig elindulunk a gyokérbdl. Meg keresstik a
kovetkezd index rekordokat, ahol a legkisebb kulcsérték még kisebb, mint a keresett
index. Ezek utan beleugorhatunk rekurzivan a kovetkez6 index allomanyban és
ismételhetjiik ezt. Addig megyilink mig blokkot nem talalunk vagy talaljuk, hogy
hianyzik a bazisbol.

Ez egy kiegyenlitett fa. Ekkor a keresés annyi miivelet, mint ahdny szint van. logK(M)

lesz, ahol k az index rekordok szdma egy allomanyba.

Az a K lehet akér 100 is nagysagrendileg.

Fontos: A kiegyenlitettség elvaras. Fontos erre figyelni, hogy ezt ne sértsiik.

A beszurasnal lehet, hogy a fa magasabb lesz, maskor lehet, hogy 1 torlés 1 egész szintel
csOkkenti a fat.

B* fa = Bayer kutato irta le.

Suru indexek

Hash

Shrd 111 pointerek

—1 T

Adatblokkok

Minden adatrekordhoz 1étrehozunk egy indexrekordot. Ennek tetejére rakhatunk egy
hash-et, amivel el lehet €rni a stiri index rekordok allomanyat.

Hatrany: garantalt +1 blokkmiivelet. Rdadasul ennek + hattértar is kell. Ennek tetejére ezt
az indexstrukturat is modositani kell, ha mddositjuk a tarolt adatrekordokat

(+karbantartasi igény).

Ez egy latszolagos vesztett helyzet, de azért ennek sok elonye is lehet.

Ha minden egyes adatrekordhoz tartozik egy indexrekord, akkor az a logika, hogy az
adatallomanyt rendezetten kell tartani, az felesleges. Akarhova beszurhatunk egy
rekordot.

Ha nem kell rendezetten tarolni, akkor van egy olyan eldny is, hogy a kitoltottség
magasabb lehet, nem lesz redundans adat a felezett blokkoknal.

Sokkal jobban tudjuk a hattértarat kihasznalni.

Gondoljunk bele abba, hogy ha ritka index alapon szeretnénk egy allomanyt tobb mez6

alapjan is indexelve keresni. Akkor ott bajok vannak, kell mégegy kiilon index.

I h i h h 1

Adatblokkok

Es akkor is ha van, akkor az adat rekordokat csak egyféleképpen lehet rendezni.

De ha személyi szdmra vannak az emberek rendezve, akkor addszam index alapjan hogy
talalunk meg akarmit is, hisz nem alapjan van rendezve.

Megoldas: Strli indexet berakni a ritka index B* fa ala, ekkor az adatallomanynak nem
kell rendezettnek lennie €s ebbdl azt nyertiik, hogy tobb indexiink is lehet.

Ezt az adatrekordba akdrhany indexre meg lehet csindlni, csak annyival tobb siirli index +
B* fa fog kelleni.

N I I N

Sird index 1 Sird index 2

| S

Adatblokkok

Ahhoz, hogy érdemben tudjunk haladni, a kulcs jelentését egy kicsit at kell

szemantikailag definidlnunk.

Definicié: Fizikai kulcs: Altalanosabban kulcsnak neveziink egy olyan mez6t, ami

alapjan keresiink. A keresés eredménye itt nem lesz feltétlentil egyedi.

PI: Kik a kecskeméti lakosok? A Kecskemét, mint varos lesz a kulcs, a talalat 70000

lesz, mert annyian laknak ott. Itt az egyediséget senki nem koveteli meg.

Mit vesziink észre? Annak ellenére, hogy +1 blokkmitveletet kapunk, ez gyorsabb lesz,
mert nem kell rendezve beszlrni és tordlni se. A keresés ideje a felsO szintektdl fiigg. A
stiri index blokk overheadja sokkal kisebb, az iteracié Iényegesebben kevesebb blokk
kozott kell, hogy lefusson.

Ebbdl az fog kijonni, hogy béven megnyerjiik a +1 blokkmiivelet overheadjét
altalanossagban.

A gyakorlati megvaldsitasban a siirli index mindig ott van a ritka index és az

adtallomanyok kozott.

Relacios lekérdezések optimalizalasa

Altalanossagban, arrdl beszéliink, hogy valaki valamilyen médon megfogalmazta azt,
hogy mit szeretne lekérdezni az adatbdzisabol (akéar deklarativan).

(Lasd, oszlopkalkulus, nagyon direkt modon fordithaté le az SQL SELECT utasitésra.)
Ezen keresztiil valik az Oszlopkalkulus teljesse.

Ezt a lekérdezést sokfeleképpen lehet leképezni. Reldcidalgebra segitségével 1s mar
tobbféle képpen le lehet irni 1 olyan lekérdezést. Nagyon nem mindegy a sorrend, mert
overheadba és gyorsasagba nem mindegy, preferaljuk a gyorsabb lekérdezéseket.

Az sem mindegy, hogy egy szelekciét milyen indexre csinaljuk.

Irgalmatlan sok kombinaci6 van, ha a miiveletsorrendeket nézziik. Lehet 2 olyan
miuvelet, ahol az egyik masodpercek alatt fut le, a masik napok alatt, de mind kett6
ugyanazt csindlja.

Az sem mindegy, hogy az adatbazis rendszer hogyan mikodik.

2 féle alapvetd modszer 1étezik, de ezenkiviil nagyon sok mas. Ezek az optimalizalasok

sokvaltozos, linearis térben végezendok.

Heurisztikus szabaly alapu optimalizalass

Definicio: Optimalizalads: Egy lekérdezés modositasa tigy, hogy az gyorsabb legyen ¢€s a
végeredmény ne valtozzon meg. Ezt mliveletek modositasaval tudjuk elvégezni.
Egy olyan dolog, ami megmondja, hogy milyen miiveletet, milyen sorrendben, milyen

algoritmusokkal, milyen workflowba kell eldéllitani a végeredményt.

Imperativ megfogalmazas esetén is lehet optimalizalni.

Lekérdezés (query)

Ertelmez§ és forditd
L Relacidsalgebrai

kifejezés

Optimalizald
Kiértékeld motor Végrehajtasi terv

~

Statisztika

Kimenet €— az

adatokrol
Adatok

crer

eloallitani.

Ez a fa egy lekérdezés.

Példa:
ALKALMAZOTT(id(PK),csaladi_nev,keresztnev,szuldatum)
PROJEKT(p_id(PK),nev)

EZEN DOLGOZIK(project 1d(FK),employee id(FK))

Ekkor ilyen lekérdezést Iehet csindlni:

select csaladi_nev from alkalmazott, ezen_dolgozik, projekt
where employee.szuldatum > '1997-12-31'

and ezen_dolgozik.project_id = project.id

and ezen_dolgozik.employee id = alkalmazott.id

and project.nev = "Hepenix";

No, akkor most hogyan?Abrazoljunk egy adott relicidalgebrai kifejezést, ahol definicio

szerint a fa gyokerében az eredményhalmaz van. A fa levelei az input relacié, amin
dolgozik a lekérdezés. A fa csoportjai a miiveletek. A vonalak, pedig azt mutatjak, hogy
miféle inputrelacion keresztiil kell az adott miveleteket elvégetni:

T csaladi_nev (° szuldatum>'1997-12-31'(employee) X ezen dolgozik > (¢ project.nev =
"Hepenix" (project)))

A képen lathat6 egy reprezentacio: (Az egyszeriiség kedvéert az E fogja az employee-t, a

P a projekteet ¢s a W (works on) az ezen_dolgozik-at.

mcsaladi nev

hJ

G project.nev =
B4 "Hepenix"

W P
G sz7uldatum='1997-

12-31"

Cél: A leggyorsabb alak kivalasztasa.
Hogyan kell ezt végrehajtani? Azért, hogy reprodukalhat6 legyen az optimalizalds,

dokumentalni kell a kezdo alakot.

Definicio: Kanonikus alak: Megcsinaljuk a descartes szorzatokat, majd a szelekciokat,

majd a projekcidkat.

Ezek utan a szelekcidkat le akarjuk nyomni a lehetd leglejjebb az inputrelaciokhoz
kozelebb. Miért is? Azért, mert a szelekcid miatt kevesebb adattal kell majd tovabb
dolgozni. Azért jobb ezeket lenyomni, hogy ezek a sziirések minél hamarabb

elkésziiljenek.

mcsaladi nev

G project.nev = "Hepenix" A @ szuldatum>'1997-12-31' AW.p id=Pp id AE.e id=W.e id

h 4 h 4

E W

Kovetkezo 1€pés: Ha lehet, akkor rendezziik at a leveleket. Az el6z6 részben az
employee.ezen_dolgozik tablat descartes szoroztunk az alkalmazottak tablaval. Na, ha
ezek nagyon nagyok, akkor ennek nagy overheadja lesz.

Fogjuk magunkat €s az ezen dolgozik tablat a sziirt projekt tablaval descartes szorozzuk,
ekkor a sziiréssel mar csak az a projekt fog szerepelni, descartes szorozva nem lesz
annyira nagyobb: Y*1 =Y.

Ez nem fogja megvaltoztatni a végeredményt, mivel fiiggetlen a 2 szelekcio.

Ilyen minta lesz: descartes utan szelekcio, descartes utan szelekcio,...

Lathato késobb, hogy ha ezeket egy miiveleteknek tekintjiik akkor jobban lehet Oket
optimalizalni. (Equi-join-okkal)
Végiil a projekciokat is meg kell probalni siillyeszteni. Végiil csak a csaladi név kell, a

tobbi projekciokat ki is hagyhatjuk. Ezt egy kozbiilsé projekcioval lehet megcesinalni.

mcsaladi nev

G project.nev = "Hepenix" A @ szuldatum>'1997-12-31' AW.p id=Pp id AE.e id=W.e id

Ekkor megkapjuk a heurisztikus szabalyon alapuld optimumot. Determinisztikus lesz,
mert mindig ugyanugy csindljuk €s emiatt heurisztikus is lesz.

Ez egy "gyorsabb" optimalizalas volt. Ha a bonyolult optimalizalds tovabb tart, mint ha

csak az eredeti lekérdezest futtattuk volna, akkor feleslegesen optimalizaltuk.

mcsaladi nev

ME.e id=W.e id

v v
nW.e id mcsaladi_nev,E.e_id
Y h
MP.p_id=W.p_id G szuldatum='1997-12-31"'
Y v
aP.p id aW.p_id,W.e_id
E
v
v
W

G project.nev = "Hepenix"

F6bb keérdés: A fa transzformacidkat mikor is lehet elvégezni?

Azonossagok:

e %0 (El x E2) =E1 ™0 E2 (A szelekcid konjuktiv elemeit kaszkadosithatjuk is,

Példa: Nem mindegy, milyen sorrendbe dobalunk ki adatokat?)

e E2 O El =E1 ~0 E2 (Lasd, eggyel felso lista elem magyarazata.)

e (E2 x01 E1) 02 E3=E1 =01 (Kommutativitas €s disztributivitassal is rendelkezik)
e %01 (E1 ~02 E2) =901 (E1) ~02 E2

e TL1UL2(El =01 E2)=("L1(El)) ~01 (* L2(E2)) (Ez azt mondja, hogy van egy
egymasba agyazott projekcios lista, a relacidt kiilonbdzo attributumokra vetitjiik, ez
megegyezik azzal, ha a relaciot csak a legkiils6 attribatumlistara vetitjiik, ez igaz, de
csak akkor, ha az alap egyenlet szintaktikailag helyes. A listdban nem lehet olyan
attribitum felsorolva, ami a késdbbi bennelévo relacidban nem taldlhaté meg. Szoval
felesleges cim alapjan filterelni, ha egy sor nem is tartalmaz cimet, mert mar mondjuk
el lett hagyba)

e (A vetités és a szelekcio felcserélhet, megint csak akkor, ha a 2 oldal szintaktikailag

helyes.)

Koltségalapu optimalizalas

Ez egy bizonyos szélséérték szamitas. Itt is sok kompromisszum lesz, de egy teljesen
mas megkdzelités. Sokkal tobbet kell szdmolni.

A szamitogépek kapacitasa nétt, igy mar mas, komplexebb algoritmusokat is tudunkk
hasznalni.

Fontos, hogy leginkdbb akkor éri meg optimalizalni, ha egy Lekérdezésrdl tudjuk, hogy

sok ideig fog tartani vagy sokan hasznaljdk azt a lekérdezést.

Definicio: Vegrehajtasi terv: Az tartozik hozza, hogy milyen miiveleteket, milyen

sorrendben, milyen algoritmusok szerint, milyen workflowban hajtunk végre.

Ezek mindegyike befolyasolja valamilyen kdltségbe a végrehajtas idejét

Definicio: Operativ metaadat: Egy tablaban vald adatokrol mond el valamit.

Pl: Hany sor van itt? Hany oszlop van?... stb.

Definicio: Katalogusadatok: Az adatbazis és tablahoz tartozo pillanatnyi adatot.

Pl: Indexek, adatok eloszldsa, milyen adat van benne. Ilyenek a struktardlis metaadatok,

szemantikus és operativ metaadatok.

Fontos, itt becsiilni fogunk (méghozza durvan), hogy milyen koltségekkel kell szamolni.

Valtozo hossziasagu rekordok kezelése

Vialtoz6 hosszisdgl rekordunk lehet, ha egy mez06 hossza valtozo vagy ismétlddd mezd /
csoport van a rekordban. (Inkabb halos adatbazisra jellemz0)

Erre ismertink par megoldast. A valtozo hosszusagu adattagokat a rekord végére rakjuk,

igy az eleje a rekordnak mindig fix.

Egy masik megoldas, a pointerezés. A valtozo adat helyett egy fix méretii pointer van

ami egy masik allomanyba tarolt adatra mutat.

A 2. esetet kicsit tobb mddon tudjuk feloldani, minden modszernek vannak elonyei €s

hatranyai:

e Lefoglaljuk azt a helyet, ami a maximalis ismétléssel vett hely lenne. Ez nyilvan

pazarlo is lehet.

» Pointereziink, ebben az esetben egy tablara el6szor és onnan az ismétlddésekre is

pointereziink.
e Kombinalt, hibrid mddszer: Lefoglalunk valamennyi helyet, ha az nem elég akkor
pointereziink.

Szimbolum katalogus:

e n,: Azr relacioban 1évo rekordok szama.

e b,: Az r relacioban levd rekordokat tartalmazd blokkok szdma.

e s,: Egy rekord nagysaga bajt-ban.

e f.: Arrelacioban mutatja, hogy 1 blokkban hany rekord fér el. (Ez a blocking factor.)

e V(A,r): Hany kiilonb6z0 érték fordul eld az A attributumokban az r reladcidéban. (Ezt az

attribitum kardinalitasanak is nevezziik). V(A,r) =" A(r)
Ha A ggyedi, akkor az attribitum kardinalitdsa meg kell egyezzen a rekordok

szamaval.
Ha A kulcs, akkor V(A,r)=n,

e SC(A,r): Selection cardinality. Egy adott attributumon feltétel szerint
megfogalmazunk egy vagy tobb kivalasztasi feltételeknek. Ez azt jeldli, hogy ezeknek
a kivalasztasnak atlagosan hany rekord fogja kielégiteni a feltételeket.
Ha A kulcs, akkor SC(A,r) =1, mert 1 kulcs érték egyezhet. SC(A,r) =n,./ V(A,r)

e Blokk faktor = rekordok / blokkok ALSO EGESZ RESZE.

e f;: A kimenetek atlagos szama, egy fa egy adott csomopontban legfeljebb hany helyre

tud elagazni.
e HT;: Az index szintjeinek szama: HT; = logf;(V(A,r) B* fanal. HT; = 1 definicio
szerint, ha van hash tabla €s gy érjiik el a rekordokat.

e LB;: A levélszintii indexblokkok szama. Ez valtoz6 hossziisagi rekord. (Lowest level

index Block)

Koltség meghatarozasa

Miben mérjiik a koltséget? Mit akarunk optimalizalni?

Ennek meghatérozasa: (teljesség igénye nélkiil)
e Blokkmiivelet szamban?
e Vilaszidé alapjan?

e Kommunikaci6 alapjan? (

PI1: Elosztott rendszerben.)

Definicio: Koltsegfiiggvény: Hattértar blokkolvasasok €s irdsok szama a vélasz
kiirasanak koltsége nélkiil. Ezt akarjuk minimalizalni. Ekkor egyes operatorok

koltsegének Osszege.
Operatorok, mitveletek koltsége

Definicio: Estimation: Egy miivelet koltsége. Jelolése Al miuvelettel: E 5 g

Select
e Al: Linearis keresés, Ep; =b,

e A2: Binaris keresés, (renezettség sziikséges a A attributum szerint, folyamatosan

helyeszkedjenek el a diszken) Ep =
[log2 (br + 1)] [

Definicio: Elsodleges index: Elsddleges index az, ahol ha sorba megyiink akkor az

C(Ar)l

adatrekordokat az 6 fizikai tarolési sorrendjiikbe tudjuk elérni.

Indexelt szelekcios algoritmusok:

e A3: Elsédleges index hasznalataval egyezés keresése. Ep3 = HT;+1

e A4: Elsddleges indexel vald keresés, ahol nem kulcs attribitumon néziink egyezést.

Eaq=
SC (A7)

fi
e AS5: Masodlagos index hasznalataval, egyenldségi feltétel mellett.
Exs5=HT; + SC(A,r) ha A nem kulcs.
Exs5=HT;+1 ha A kulcs. Be kell jarni a fat, hogy megkeressiik a jo blokkokat + hany

HTi+[

helyre kell elmenni az SC(A,r) ezt megmondja.

Osszehasonlitas alapu szelekceio (° A <= v (R))
e Az eredményrekordok szamanak becslése: Ha v-t nem ismerjiik, akkor n,/2. Jobb

hijjan nincs jobb becslésiink, ettdl van a legtavolabb a 2 worst case edge.

* Ha v-tismerjiik, egyenletes eloszlas esetén: nygagqs =
v-min (A4,71)
n .
" max(A4,7) -min(A4,7)

* A6: Elsédleges index hasznélataval, ha v-t nem ismerjiik: Exq = HT; + b,/2 Atlagosan
még blokkok/2 blokkot is megnéziink, ami nem kell.
Ha v-t ismerjlik:

c
E 4 = HT; + [—]
A6 l fr

e A7: Masodlagos index-es egyenldtlenségi feltétel: Ep7 = HT; +LB;/2 + n,/2 (utana
index fanak a levelein kell menni, ezek a levél blokkok rendezettek, a B* fanak levél
node-jait dssze pointerezik, igy ha tudjuk, hogy hany blokkot tudunk elérni, annyi
1€épésbdl el 1s tudjuk érni, ha elértiik, akkor az ottani mutatokbol atlagosan rekordszam
fele kell. Ossze-vissza vannak akarmilyen blokkokban. Ez elég nagy becslés, atlagos
esetben a blokkok szdma fele helyett akar 50 db blokkot kell olvasni. Ekkor a
folytonos adatfgjlt linearis kereséssel gyorsabban lehet olvasni. Ebben konkrétan az

index feltétele lassitani fogja a rendszert, az erdltetett linearis keresés miatt.)
Join
e Természetes illesztés

e Nested loop join, 2 for ciklussal, ha van illeszked? érték akkor az eredményhez adjuk.

Ez worst case b, + bg*n, Az elsd a kiilsd ciklus, + rekordok elérése a belsoben.

Ha a memoriaba belefér: b, + by

e Block nested loop join: Ha tudjuk, hogy a blokkmiiveletek a kritikusak, akkor a
blokkokat egy 4 for ciklussal tudjuk nézni, hogy ha talaltunk egy illesztést, akkor
nézzlink meg mégegyet. Mar nem annyiszor kell végigporgetni, ahany rekord van,
hanem annyiszor ahany blokk van.

b, + b, *bg Ha van indexiink, akkor konnyebb, olvassuk a blokkokat és masik
relaciobol mar indexelten keresiilt. b, + n, * c.. Ahol ¢ helyére lehet index futast
helyettesiteni.

Tovabbi join implementaciok

e Sorted merge join. Ez a legelterjedtebb, a 2 relacidt rendezziik és csak egyszer végig

kell menni.

e Hash join: Az illeszkedd rekordokat nem index, hanem hash tablan keresztiil keressiik.

e Bitmap index join.
Egyéb miiveletek:

Ismétlodés

Projekcid

Unid

Kifejezésértékelések tovabbi modjai

e Materializacid: Meg kell varni, amig egy kért query mar eldallt.

e Pipelining: Egymastdl fiiggetlen query-ket eldre vessziik, tobb modul dogozza ezeket

fel. Ez nem mindig alkalmazhato.
Koltségalapu optimalizacios implementacios

Fel kéne sorolni sok tervet €s meg kell nézni mindegyikhez a becsiilt koltséget. Amelyik
a legalacsonyabb, azt valasztjuk.
Ez jol hangzik, de nem annyira miikodik.

A gyakorlatban az optimalizalok nem tudjak a jo terveket (0sszeset) idoben megtalalni.

Ezt persze heurisztikdkkal meg lehet talalni.
Join algoritmusok

Ezeket tanuljuk a targy keretében. C++-ban Ujra implementalva:

#include <iostream>
#include <vector>

size t block operations = 0;

struct Record{
int data = 9;

Record(){
data=0;

Record(int a){
data=a;

i

struct Block{
private:
std: :vector<Record> data;
size t s = 0;
public:
Block(){
}
Block(size t n){
for(size t i

0;i<n;i++){
Record r Record(i%2);
data.push_back(r);

const std::vector<Record>& read() const {
block operations++;
return data;

}

const Record& readAt(size t i) const {
block operations++;
return data[i];

void printData(){
for(Record r : data){
std::cout << r.data << "|" << std::endl;

size t size() const {
return s;

}s
const void printAndResetStats(const std::vector<Record>& rr){

std::cout << "Az illesztett eredményhalmaz:"
<< std::endl;

for(Record r : rr){
std::cout << r.data <«

ll|ll.
J

}
std::cout << "Ennyi blokkmivelettel: "

<< block_operations << std::endl
€ Mo " << std::endl;

int main() {
//Csak 1 blokk van az egyszerliség kedvéért,
de belathatd, hogy mi lenne, ha tdbb lenne

Block bi
Block bj

Block(10);
Block(20);

std::vector<Record> resultl;

//egymasba agyazott ciklikus illesztés
(nested loop join)
//kdltsége bi + ni * bj
//optimdlisan nagy memdoria esetén bi + bj
for(size_t i = 9@;icbi.size();i++){
for(size t j = 0;j<bj.size();j++){
Record recordl = bi.readAt(i);
Record record2 = bj.readAt(j);
if(recordl.data == record2.data){
resultl.push back(recordl);

¥
printAndResetStats(resultl);

std::vector<Record> result2;

//blokk egymasba agyazott ciklikus illesztés
(block nested loop join)

//koltsége bi + bi * bj

//optimdalisan nagy memdria esetén bi + bj

//for(size t i = 0@;i<bi.size();i++){
//for(size t j = 0;j<bj.size();j++){
//mivel csak 1 blokkos a 2 relacidé, nem kell

for loop, lehetne egy Relation struktura
amiben

mondjuk tobb blokk is lehet, akkor kéne,
de ugy nem lenne szemléletes.

std::vector<Record> recordsl = bi.read();
std::vector<Record> records2 = bj.read();
for(size t x = @;x<recordsl.size();x++){
for(size t y = 0;y<records2.size();y++){
if(recordsl[x].data == records2[y].data){
result2.push _back(recordsl[x].data);

/1 }

//}
printAndResetStats(result2);

//Index alapu illesztés

//Ez azt hasznalja, hogy az egyik relacidban van
indexiink, ekkor a koltség br + nr* c lesz ahol
Cc az index bejarasi koltség.

//Merge join

//Ez akkor j6, ha rendezve vannak az elemek, ekkor
bi + bj blokkmiivelet kell, masképp még a rendezés
koltsége is bele szamit.

//Hash join
//Amikor a join a rekordokat a masik reldcidéban valami

hash fuggvénnyel éri el, ilyenkor nem kell 2. for de
ennek

megvaldésitasara annyi lehetbség lehet, hogy ezt

nem részletezem.

return 0;

SQL-re példak

Vegyiink egy reptiléfoglalas rendszert, ezt mondjuk igy abrazoltuk:

Telefonszam //r_—ﬁ_“\

Sziletési datum p S—
Business osztlyon
van-e
Ulés

@ Oszlop széma

Utas

AZonosito

Klubtagsag

Ide foglalt

Utazas datuma

Ennek irjuk fel a sémajat gyakorlds képpen és adjunk egy mesterséges kulcsot ezekhez:

(Osszegylijtott akcios
pentok szama

Helyfoglalas
détuma

Utas(utas_id(PK), azonosito, nev, lakcim, telefonszam, szul _datum, klubtagsag,
akcios_pontok szama)

Ide foglalt(foglalas id(PK), jarat szama, utazas datuma, helyfoglalas datuma,
utas id(FK), ules id(FK)(FK))

Ules(ules_id(PK), sor, oszlop, repulogep_tipus, business_osztalyon_van_e)

Ha ezeket Oracle SQL-be tablakka akarunk alkitani, igy tehetjiik meg:

create table Utas (

utas_id NUMBER CONSTRAINT pk utas PRIMARY KEY,

azonosito VARCHAR2(30) not null CONSTRAINT uk_utas_azonosito
UNIQUE,

nev VARCHAR2(100) not null,

lakcim VARCHAR2(255) not null,

telefonszam NUMBER(12),

szul datum DATE,

klubtagsag VARCHAR2(10) not null,

akcios pontok szama NUMBER(10) DEFAULT 1 not null,

CONSTRAINT chk utas_telszam CHECK (telefonszam IS null or
(telefonszam > 9999)),

CONSTRAINT chk utas szul datum CHECK (szul datum IS null or
szul datum > DATE '1910-01-01'),

CONSTRAINT chk utas klubtagsag CHECK (klubtagsag in ('SILVER',
'GOLD', 'PLATINUM')),

CONSTRAINT chk_utas_akcios_pontok CHECK (akcios_pontok_szama >=
0)

)

create table Ules (

ules id NUMBER CONSTRAINT pk ules PRIMARY KEY,

repulogep tipus VARCHAR2(50) not null,

oszlop CHAR(1) not null,

sor NUMBER(2) not null,

business_osztalyon van_e CHAR(1) DEFAULT 'N' CONSTRAINT

chk_ules business CHECK (business_osztalyon van_ e in ('I', 'N')),
CONSTRAINT chk ules oszlop CHECK (oszlop between 'A' and 'M'),
CONSTRAINT chk _ules sor CHECK (sor between 1 and 24),

CONSTRAINT uk ules egyedi UNIQUE (sor, oszlop, repulogep tipus)

)s

create table Ide foglalt (

foglalas id NUMBER CONSTRAINT pk ide foglalt PRIMARY KEY,
jarat_szama NUMBER(10) not null,

utazas_datuma DATE not null,

helyfoglalas datuma DATE,

utas_id NUMBER not null,

ules id NUMBER not null,

CONSTRAINT fk foglalas utas FOREIGN KEY (utas_id) REFERENCES
UTAS(utas_id),

CONSTRAINT fk foglalas ules FOREIGN KEY (ules id) REFERENCES
ULES(ules_id),

CONSTRAINT chk foglalas datumok CHECK (helyfoglalas datuma IS
null or helyfoglalas datuma < utazas_datuma),

CONSTRAINT uk foglalas egyedi UNIQUE (jarat_szama,
utazas_datuma, ules_id)

I

A logikéat érdemes gyakorlasképpen atnézni.
A constraint-ok segitenek az értékeket megszoritani, hogy csak bizonyos értékeket
lehessen felvenni a tablakba.

Pl: Nem lehet illegalis iilés sort vagy oszlopot felvenni.

Probaljuk ezeket feltolteni értékekkel €s nezziik meg, mit enged.
SQL clause magyarazatok

e SELECT: a projekcionak megfeleltethetd.

e X FROM A: X oszlopot valasztja ki az A tablabol.

e DROP TABLE tablanév: Kitorli a tablanevet

e CONSTRAINT név CHECK (kifejezés): A check kifejezés megfeleltet egy vagy

tobb oszlopot, hogy a kifejezés igaz legyen, ha nem igaz, nem szerepelhetnek az
értekek a tablaba.

e PRIMARY KEY: Elsédleges kulcs

e FOREIGN KEY: Idegen kulcs

o INSERT: Uj sort lehet beilleszteni egy tablaba.
e UPDATE: Sor frissitésére alkalmas.

e DELETE: Sor torlésére alkalmas.

e WHERE: Szelekcionak megfeltethetd.

e GROUP BY: Csoportositja a kimenetet egy oszlop adatra. Excel szlirésnek

megfeleltethetd bizonyos szempontbol.
e VDER BY: ASC vagy DESC lehet. Vagy novekvd vagy csokkend sorrend.

e HAVING: A group by-ra van. Csak azt adja a group by vissza, ami megfelel a having

utani vizsgalatnak.

Fizikai adatszervezés - feladatok

Ahhoz, hogy szamolni tudjunk, sziikségilink lesz mindenféle értékre eldszor. Ezeket az

értéekeket szoktuk hasznalni és szamolni:

n,: Rekordok szama,

s;: Rekord mérete, (size of record)

k.. Kulcs rekord mérete,

p;: A kules rekord pointerének mérete,

B: Block capacity. Ez egy szamérték, ami megmondja, hogy 1 blokk hany byte.

Adottak ezek az értékek:

e n.=1000

e s.= 850 byte
e k. =50 byte

e p,= 18 byte

e B =4000 byte

Szamoljuk itt ki a blocking factor-t! (F,-t)!
Ez ugy szamolhat6 ki, hogy a blokk kapacitast elosztjuk azzal, hogy mekkora 1 blokk:
B
F= 7]
Azért vessziik az alsé egészrészét, mert 1 blokkon egész szamu rekordot akarunk tarolni

¢és 1 rekordot 1 blokkon akarunk csak tarolni. Széval nem lehet az, hogy 1 rekord 2

blokkon is van.

P1: Ha a 3.4 rekord jon ki akkor 1 blokkon csak 3 egészet tudunk tarolni.

Behelyettesitve itt:
__ | 4000 byte |
Fr= [850byte| B

Tehat ebben az esetben 1 blokkon 4 egész rekordot tudunk tarolni.

A kovetkezOt szeretnénk megtudni: Hany block lesz az index struktura pointerekkel
egyltt?

Nos ahhoz, hogy ezt ki tudjuk szamolni, meg kell hatarozni egy indexrekord méretét, ami
egy kulcs + egy pointer:

Fiiox =D, + k;

A mi értékeinket behelyettesitve ez:

F\ izx = 18 byte + 50 byte = 68 byte

Hat ez remek, most a blocking factor képletet kell alkalmazni itt is, csak most nem egy

adatrekord méretét hasznaljuk, hanem az indexrekordét:
__ | 4000 byte |
FT_[68byte]_

Ha mar tudjuk, hogy hany rekord van, akkor hatdrozzuk meg azt is, hogy hany blokk van.

Ezt ezzel a képlettel tudjuk kiszamolni:
Blocks = ﬁ]
oo
Ebbe behelyettesitve azt kapjuk, hogy 1000/4 = 250. Azért kell itt most a felsd egészrész,
mert lehet, hogy annyi rekordunkra van, hogy sziikségiink van még egy blokkra amit

viszont nem hasznalunk ki teljesen.

Példa: Ha a blokkok 100 rekordot tartalmaznak, és nekiink 301 rekordunk van, akkor is
4 blokk kell, mert valahol azt az 1 rekordot is el kell tarolni, ami marad.

M1 a kiilonbség, ha a blokk mar a memoriaba van eléréskor? Nos elég sok, mert nem kell
betolteni.

Ha binaris kereséssel ériink el blokkot, akkor mennyi blokkmiivelet kell, ha 6 blokkunk
van?:

[log2 (1 + 6)] = 3 Kell egy extra Iéptetés is, mert mi van, ha csak 1 blokkunk van ¢és

abba van az 0sszes rekord.

(Vodros hash atlag: lancolt listdk hossza 6sszeadva/B)

N"EDDIG TART A ZARTHELYI ANYAGA!!

Visszatériink a kozépso réteghez €s egy alternativ logikai sématervezési opciora fogunk

ranézni.

Emélkeztetd: Van a vilagunknak egy darabja. Ebbdl egy eldmodellt allitottunk eld, ez
pedig egy ER modell volt, aminek a grafikus reprezentacidja az ER diagram.

Ebbdl az elémodellbdl allitottuk el azt az adatmodellt, ami mar alkalmas arra, hogy a
vilagnak egy részének adatait leképezze €s képesek legylink annak a tudashalmaznak
amit leképeziink jol értelmezni, hogy ebbdl sok tudést tudjunk visszanyerni.

Ebbdl ugy lett adatmodell, hogy + miivelethalmazt adtunk hozza.

PI: Relacios séma.

Nem csak idegen kulcsokkal lehetne 6sszedrotozni az adatokat,

pl: pointerek, asszociaciok.
Ezen az Gton a vilagunk szemantikdjat vittiik bele, + formalizmusokat, model specific

elemek.

Szemantika

Eldmaodell Relacios

(ER) Y modell
Formalizmus Konkrét (izleti)
adatmodell

Ez miért nem jo? Azért, mert nehéz észben tartani, hogy a relacios halmazokat egyes
esetben hogyan kapcsoljuk 6ssze. Ha ilyen mddon terveziink relacios adatbazisokat akkor
anomalidk 1éphetnek fel.

Eddig a kapcsolatokat inkabb heurisztikusan allapitottuk meg, mint hogy az
tudomanyosan lett volna megallapitva.

A tipikus miveletek ebben a kornyezetben: update-insert-delete miiveletek a lehetd
leghatékonyabban legyen végrehajthato.

Ennek fliggvényében megkiilonboztetlink update-insert-delete-anomalidkat:

Konkrét példa adatbézis: Szallitd: Egy adott boltba mindenféle termékeket szallitanak be,

ennek vann neve, cime, terméknév, ar. llyen adatok vannak azb adatbazisban: Kis a Janos

utca 1.-ben tejet szallit 2FT-ért.

i Ide Mit . .
Név o o Mennyiért? | Lakik?
szallit | szallit?
Lo .
\ . Lo
Janos |utca | Tej 2FT
utca 1.
1.
Lo .
. , LS
Janos |utca | Vaj 2FT
utca 1.
2.
Lo .
] , LS
Tamas | utca | Tej 3FT
1 utca 1.

No, itt mi torténik, ha Janos lakcimet valt. Logikus lenne, hogy minden rekordba atirjuk,

de baromi lassu lenne. Ha

pl: Kevés Tamas rekord van, akkor ha Tamas koltozik, akkor a valaszid6 kevesebb, mig
ha Janosnak t6bb rekordja van akkor a valaszid6 tobb. Ez a rendszer valaszid6
szempontjabol tervezhetetlen.

Ez az egyik update anomalia.

Nézziink példat a beszarasra: Tamas 1) dolgot is akar beszallitani, amihez 0j rekord kell.
Hogyan lehet 0j rekordot felvenni? Ugy, ha ki tudjuk tolteni az 6j rekordot adatokkal.
Tipikusan valami kézi adatbevitellel szoktak csinalni. Be kell gépelni a cimet, nevet,
ilyesmit... Ez azért baj, mert ha elgépeli a cimet akkor baj van, vagy az is lehet, hogy méar
a cim frissiilt.

Eldfordulhat, hogy cim helyére nem a kivant adat kertilt. Lehet erre minden ellendrzést
irni, miikodik de ez + gépidd az optimalis adatszervezésel szemben.

Akkor mar miért nem 1 helyen taroljuk a cimet? Pointerezziink! Ez volt az insert
anomalia. A masik probléma akkor meriil fel, ha 0j szallitot vesziink fel.

Benedek szeretne beszallitani, még nem szallitott be semmit, de fel kell venni az
adatbazisba. No, most ebbe a rekordba a Név+Termék egyedileg meghatarozza a
rekordokat

Na, most ez az Osszetett kulcs nem all ilyenkor rendelkezésre, lehet rakni @ értéket, de

akkor mar nem kulcs a kulcs. Latszik, hogy a megoldas ebben az esetben nem trivialis
Ez volt a 2. insert anomalia

Torlési anomalia: Egy szallito mert nem széllit egy bizonyos terméket. [lyenkor torolni
kell egy kulcs EGY RESZET. Ez baj, ilyenkor csak azt tudjuk csindlni, hogy toroljiik a
sort. Igen, de mi van, ha az a beszallito utolso terméke volt? EKkor mar a beszallitd neve
NEM lesz benne az adatbazisban. Rosszul van tarolva. Mi van, ha akarom tudni, hogy

kinek szamlazzak? Nem tudok, mert lehet, hogy nincs benne mar a beszallito neve.

Definicio: Redundancia: Akkor van, ha egy adatot tobbszor taroljuk el attél még nem
redundancia, csak akkor redundancia, ha az értékismétlédés felseleges.

P1: Név helyett beszallito id a tablaban. Igy egy helyen van a név. Egy adatbézis
redundéns akkor, ha valamely benne 1év0 attribltum értékét ki lehet kovetkeztetni
valamely maésik attributum értékébdl valamilyen ismert kovetkeztetési szabaly

felhasznalasaval.

Definicio: Reldcio redundancia: Egy relacié redundéans akkor, ha benne 1évd valamely

attributum értekét ki lehetne kovetkeztetni egy masik attributum értékével egy jol

definialt megkdvetkeztetési szabaly alapjan.

Ha ezt a redundanciat megsziintetnénk, akkor az insert-update-delete miiveletek
hatékonyabban lehetnének végrehajtva. Hogy lehetne? Ugy, hogy specifikus

kényszereket épitiink be a tervezési folyamatba.

Pl: Nem lehet string idegen kulcs. Hiilye, egyszerii kényszer.
Kényszerek

2 feéle van, értek fliggd €s fliggetlen.

Definicié: Ertékfiiggd kényszer: Olyan kényszer, ahol egy mez6 értékét korlatozzuk egy
intervallumba vagy konkreét értékekre.

P1: 30-t6] nagyobb emberek testmagassdga nem lehet kisebb, mint 20 centi.

Definicio: Ertékfiiggetlen kényszer: Olyan kényszer, ami nem fiigg konkrét értéktol.

Pl: Tartalmazasi fliggés: Van egy vallalat, vannak dolgozok és osztalyok. Vannak kulcsai

mindkettdnek, az, hogy ki hol dolgozik leirhat6 ugy, hogy egy masik tablaba
osszerendeljiik a 2 idegen kulcsot, ez lesz az "Itt dolgozik" tabla vagy relacid. Ebben

csak olyan id-k jelenhetnek meg, amik a masik tablakba is benne vannak. Ha olyan

jelenne meg, ami nincs benne a dolgozé ba, akkor az ilyen fantom dolgozé lenne.
Lehet még funkcionalis fiiggés: Kivalo példa az, hogy a név és cim kozott 1:1 kapcsolat
van. "1 db szallitonak csak 1 cime llehet". Tudhatjuk, hogy ahol felbukkan a szallito
neve, ott a cimnek is ugyanannak kell lennie.

"A név meghatarozza a cimet"

Pl: Egy ember személyi szdma meghatarozza az ember nevét, cimét, sziiletési datumat,
stb.

Most a vilagunkat elsddlegesen funkcionalis kényszerekkel fogjuk képezni. Egy fiiggés
modelt alkotunk. A fliggés model az ugyantigy az adatszemantikat fogja az adatmodellbe

behozni.

Pl: NEV meghatarozza: CIM. Ha ez az értelmezés olyan, hogy legfeljebb 1 cim tartozik

1 névhez, akkor mar tudjuk mondani, hogy a névtdl fiigg a cim.

Ekkor az ember (Nev(PK), Cim) helyes lesz. Ekkor mondjuk mas strukturakba is be lehet
irni a nevet Beszallit(Aru id(PK),Név(FK),ar,hova)

Ilyenkor mar nem irjuk ki a cimet redunddnsan t6bbszor.

Legyen a tablanak 2 sora, X és Y. Es ebben az attributumhalmaz értéke x és Y-ban x'. Ha
ezek a 2 sorban megegyeznek ezek az x-ek és egy y masik attributum szerint is
megegyeznek, valamint stimmel rajuk a séme akkor tulajdonképpen formaélisan az lett
kijelentve: A szallitd neve és cime kozott akkor van funkcionalis fliiggdségi viszony, ha a
név értékkor csatlakozasnal a cim is az.

Ez igy jo-e. Nem, mert egy adott reldcion nem feltétlen teljesiil a szemantikus

adatfliggés. Adatvaltozaskor nincs ez betartatva.

Itt azt formalizaltuk, hogy X ésY attributumok kozott mikor all fel a funkcionalis
fliggdség?

- 2 Sorban az X értekek megegyeznek. (P= 2 érték megegyezik)

- 2 Sorban az Y értékek megegyeznek. (Q= megegyezhet valami vagy nem egyezhet
meg, tokmindegy)

Kapcsolétablanal 2 kulcs kell.

Definicid: Implikacio 2: 2 valtozos logikai fliggvény. Ha A implikalja B-t: Ha A=B=1,
akkor igaz, akkor is igaz, ha A igaz, masképp hamis. (Igaz, haA=1vagy 0és B =1)

A kovetkeztetési szabaly a redundanciahoz: Fennall-e a funkcionalis fiiggdség?

Ez alapjan kovetkeztessiik ki a cimértéket. Ha mondjuk az egyik sorban ki toroljiik a
cimet DE mi egy masik adat / informécid alapjan ki tudjuk kovetkeztetni, hogy ott mi allt
akkor az ott redundans érték volt.

A funkcionalis fliggdség fennall, ha a névértékek megegyeznek €s a cimértekek
megegyeznek.

Ekkor a cim értékét ki tudjuk kovetkeztetni, mert P értéke 1.

Funkcionalis fiiggések alapjan fogalmak ujradefinialasa

Definicio: Jelolés: A,B,C attributumokat, X,Y,Z adott halmazt, R,S, T -val egy adott

sémat.

Definicio: Determindns: Legyen egy relacios séman egy X és Y halmaz és teljesiiljon az
a feltétel, hogy az X meghatarozza Y-t, ekkor X Y determinansa. (Ha teljesiil az, hogy
ha az X meghataroz egy olyan halmazt ami megegyezik a teljes sémaval (€2)).

Definicio: Kulcs 2: Ha X meghatdrozza Q-t és nem Iétezik x' részhalmaz ami minimum

meghatarozza az QT-t akkor az X neve: kulcs. Itt az egyediséget mar megkivanjuk.

Definicid: Szuperkulcs: Arrol besz€liink, ha X meghatarozza az Q-t. Nincs minimalitasi
feltétel.

Definicio: Részleges és teljes fiiggés: ha X meghatarozza az Y-t és létezik olyan x'
részhalmaz ami meghatarozza az Y-t akkor Y részlegesen fligg X-t6l. Ha nincs ilyen x'

akkor van teljes fiigges.

Definicio: Egyszerii / dsszetett kulcs: Ha egy kulcsnak csak 1 attributuma van akkor
egyszerl,, masképp Osszetett / kompozit. Ha kulcs akkor minimalis, ha nem minimalis

akkor szuperkulcs.

Definicid: /degen kulcs: Ha X kulcs akkor x' Q-ban idegen kulcs, ha x' X-ben kulcs

Definicid: Név: Ha x1,x2,xn Q kulcsai akkor ezek koziil az egyiket dontés szerint

elsddleges kulcs lesz. A tobbi neve pedig kulcsjelolt lesz.

Definicio: Omega halmaz és kulcs kozotti kapcsolat: Ha a séma kulcsai x1,x2,xn akkor
az unidja az xi halmazoknak fogja megadni az elsddleges attributumok halmazat. Az Q -
Elsédlege attributumok = Mdasodlagos attributumok.

Tétel: Minden relacios sémara 1étezik legalabb 1 kulcsa.

Relacios sématervezés normalizalasa (Ismétlés)

Probléma: Egy megoldasra / specifikaciora tobb, kiilonbozd ER diagram 1étezik. De
melyik a legjobb?

Meg kell fogalmazni, hogy milyen értelemben a legjobb?

Cél: Az olvasasokat a legnagyobb hatékonysaggal és biztonsaggal lehessen olvasni / irni.
Legyen egy olyan relacid ahol szallitoknak az adatait taroljuk:

Név Cim Tétel | Ar
Ferenc L6 utca) 10
, Viz
Jozsef 1 FT
_ LS utca] 10
Jani Viz
2 FT
Ferenc L6 utca _ 20
. Tej
Jozsef 1 FT

Ami szembetlind, hogy a nevek, cimek, tételek és arak ismétloédnek. Ez nem jé, tobbszor
kell eltarolni, de vannak mas bajok is.

Teljesen redundans a név melett a cim, mert mar a névbdl kideriil, hogy hol lakik az

ember.
A szallitot sem kellene annyiszor azonositani, ahany terméket szallit.

Az is érdekes, hogy hogyan korrelal az 4ru név az araval.

Redundancia

Sok fejtorést fog okozni.

Insert, Update, Delete anomalidkat fog eldidézni.

Update anomalia

Akkor taldlkozunk ezzel, ha Ferenc Jozsef elkoltozik, mert ekkor nem hatékonyan,
sokkal tobbszor kell atirni ugyanazt az informaciét. Ez itt nem baj, de mi van, ha 8
1000000 terméket szallit. Akkor mar lasst lesz az update NAGYON.

Az is lehet, hogy Ferenc Jozsef rekordjai kiilon blokkokban vannak, nem tudjuk, hogy
mennyi blokkmiivelet lesz ez.

A legsulyosabb az, hogy ha tobb rekordba is van ez a cim akkor nincs felsd korlat amit
mondani tudunk hogy mennyi rekordot kell atirni. Ekkor 1d6t se tudunk mondani.

Insert anomalia

Egy 0j rekordot szeretnénk Janinak bevinni mert mar téglat is szallit. Ekkor be kell
vinniink a nevét + cimét de véletlen régi cimet visziink be. Ekkor a jo cim informacid
elveszhet, mert manualisan kell azt bevinni.

(Lasd: Gizi néni az MNB-nél szar email cimet visz fel az adatbdzisba)
Delete anomalia

Ha én egy tételt ki akarok torolni akkor egy sort ki kell torolndm. De ha kitérlom Jani
tételét, akkor maga a beszallitd adata is megszlinik azzal, hogy 1 tételt ki tordltiink.

Megoldasok ezekre

A relacioinkat az univerzalis relacidébol egyre kisebb, tobb relaciora fogunk bontani ugy,

hogy ezek az anomalidk nem forduljanak eld.

Pl:
Név Cim
Ferenc Jozsef L6 utca 1
Jani Lo utca 2
Ferenc Jozsef Lo utca 1

Név Tétel |Ar

Ferenc Jozsef Viz 10 FT
Jani Viz 10 FT
Ferenc Jozsef Tej 20 FT

Erezhet8, hogy ezek a tablak ugyanazt az infot hordozzak de mér az anomaliak nélkiil.

Funkcionalis fiiggés

Példa: Név meghatarozza a Cim-et. NEV->CIM

Erdemi fiiggés: V t, t' € r(R), t{X] = t'[X] esetén A attributumra t[A] = tA].

Fontos, hogy ezt egy ha-akkor allitassal lehet modellezni, de ez implikécid, szoval a ha-
tol fuggetleniil 1igaz lesz a "q akkor", csak akkor nem ha a "p ha" igaz.

Pl: Egy egy sort sémaba minden funkcionalis fiiggdség teljesiilni fog. (Gondoljunk bele,

a szuper kulcs mindent is meg fog hatdrozni ahhoz az 1 sorhoz).

Normal formak

Ezek tulajdonsdgok gylijteményei, ami arrdl szol, hogy ha egy adott séma egy formara

illeszkedik akkor a séma redundancia jellegére jellemezhetd lesz.

Definicid: /NF: Egy reldcios séma elsd normal forméban lesz akkor ha a sémaban

valamennyi attribitum atomi.

Pl: Az attribtitum akkor atomi, ha egy attribitum-ot nem bontunk szét tobb elemmé és

azokon nem végziink tobb kiilon miiveletet.

Pl: Az ¢letkor legyen csak életkor és ne tarolja

pl: az els6 2 bitje az ember nemét IS.

Ez példaul nem teljesiti az 1NE-et:

Osztaly | Cég Dolgozdék

Valami Matyi, Jani,

Marketing . ,
KFT Feri, Juli

Ezt ONF-r6l 1NF-re igy lehet atirni:

Osztaly Cég

Marketing Valami KFT

CéglD Dolgozék

Név
Matyi | Valami KFT

Jani Valami KFT

Feri Valami KFT

Juli Valami KFT

Fontos, hogy ez még nem segitett a redundancidba, majd a 2NF és felette lesz.

Definicido: 2NF: Akkor van egy reldcids séma 2. normalformaban ha mar INF és
minden masodlagos attriblituma minden kulcstol teljesen fligg. Vagyis, nem talalhat6
mondjuk olyan ahol 2 kulcs van de mégis 1 kulcscsal 1s meg tudunk hatarozni az

attributumot.

2NF-nél nem szabad, hogy barmely kulcs akar csak a részhalmaza is determinalo legyen.

(

PI: A nevek, mint "Szabo Ferenc" egy része meghatarozo is lehet, ez mar szélsdséges de
ezért kell mesterséges kulcsokat hasznalni).

Pl: R(A,B,C,D) F = {AB -> C, B->D} ekkor, AB szuperkulcs. Probéljuk elvenni az A-t,
B meghatarozza magat + D-t, A meg csak magat. Ekkor nem tudunk részt elvenni és
minimalis is szoval kulcs.

Az A és B elsddleges mig a C és D masodlagos, viszont a kulcs valddi részhalmazatdl
fugg a D (B-tol), ez sérti a 2NF-et. Tehat ez csak INF.

P1: Ha t6bb rekordnak is bl a B attributuma akkor az azt implikalja, hogy tobb
ugyanolyan D lesz, ami probléma a redundancia miatt. Ekkor ezt meg kell sziintetni.

Ha egy reldcids sémanak minden kulcsa egszert kulcs akkor az mindig 2NF lesz.
Bizonyitas: Belathato, hogy a kulcsoknak nincs részhalmaza ami determinal tehat a 2NF
teljesiil.

Definicié: Tranzitiv funkciondlis fiiggdség: Van X egy részhalmaza az univerzumnak ¢€s
Y és A attributuma és X meghatarozza Y-t €s Y meghatarozza A-t és A |=, akkor A az

X attributum halmaztol tranzitivan fugg.
Ez akkor van, ha van egy attributum halmaz, ami az Y értékekekt meghatdrozza, ami
pedig A-t meghatdrozza. Tehat X meghatarozza A-t indirekten.
Definicio: 3INF: Egy séma akkor 3NF akkor ha 1NF és egyik masodlagos attributum

sem fligg tranzitivan a kulcstol.

Definicio: 2. Definicio: 3NF: A séma INF V X — B | B = X esetén X szuperkulcs vagy
B elsddleges attributum.

Tétel: 1. Def = 2. Def.
Bizonyitas: Tegyiik fel, hogy nem szuperkulcs / elsédleges attributum-ra is igaz lenne az

1. def. Ekkor azt allitjuk, hogy fligghet tranzitivan egy 2.-lagos attributumtol egy masik

masodlagos attribatum.

Pl: Foglalasok vannak termekre, melyeknek az ID-jét, a teremkddjat €s a terem max

1étszamat taroljuk. Egy sor lehet

pl: (1JE1A|300) A foglalas id a kulcs, amitol fliigg a terem szam masodlagos attributum

viszont a teremszam meghatarozza a létszamot. Ekkor a 2. def-t sértené + magat is.

Definicio: BCNF: INF és attributum nem fiigg tranzitivan kulcstol.

Definicio: 2. Definicio: BCNF: A séma INF V X — B | B |= X esetén X szuperkulcs

alternativa nélkiil.

Tétel: 1. Def = 2. Def. és a BCNF resztriktivebb, mint a 3NF.
Bizonyitas: Trivialis belatni, hogy a definici6bdl jon a resztriktivebb természet. a BCNF

megkivanja, hogy V X — B X-nek szuperkulcsnak kell lennie, a 3NF viszont

megengeddbb, mert elsddleges attributum is lehet.

Tétel: BCNF > 3NF > 2NF > 1NF (erdsség szempontjabol).

Bizonyitas: Az BCNF > 3NF belattuk feljebb. Az is trivialis, hogy 3NF,2NF > 1NF, mert
az INF feltétele a 2 és 3NF-nek.

Tétel: A BCNF funkcionalis fliggdség redundanciamentes.

Bizonyitas: A redundancia egy Z — B nemtrividlis funkcionalis fiiggdségtol lesz, ahol Z
nem szuperkulcs, ismétlddés miatt, (azért okoz redundanciat, mert 2 ugyanolyan Z-hez
(mivel nem szuperkulcs, lehet €s értelmes) 2 ugyanolyan értéket rendeliink B-re) ezért
egy 2. attributumot kotelezo jelleggel kellett meghatarozni. A BCNF definicidja szerint
minden Z — B fliggésre Z-nek szuperkulcsnak kell lennie. Ekkor ha a Z szuperkulcs,
akkor nem ismétlddhet és B-t se lehet kikovetkeztetni (redundansan). Ellentmondas. fgy
nincs redundancia.

Tétel: 3NF(R) — 2NE(R).

Bizonyitas: TFH. hogy R nem 2NF de 3NF. Ha nem 2NF akkor 3 k'—B ahol k' egy
kulcs része, akkor B részlegesen fligg k-t61. Ekkor nem teljesiil a 3NF, ami szerint V X
— B | B I=X esetén X szuperkulcs vagy B elsddleges attributum. Egyik se teljestil, tehat
ellentmondasba jutottunk.

Cél: BCNF-sémak konstruktalasa lesz.

Egy fliggdség lehet eseti, amikor 1 sémén all fenn és érdemiek, amik tobb séman vannak.
Az érdeminek van ismert (mert adott vagy modelleztiink) és nem ismert (viszont
1étezhet) is van.

A célunk ezeknek a fiiggésegnek a kideritése.

Tervezziink egy mechanizmust ami inputnak kap mar meglévd funkcionalis fliggdséget
¢és azokbol kiad 0 funkcionalis fliggéségeket. El kell varnunk, hogy értelmes fiiggéseket
adjon ki, legyenek azok helyesek. A 2. elvaras pedig az, hogy ha egy fliggéshalmaz
mellett végez inputbol az dsszeset allitsa eld az Ossze fiiggést. Nem hatrany, hogy a

fekete doboz egyszertien mitkkodik + hatékony.

Definicio: /gaz fiiggés: Egy adott A funkcionalis fiiggéshalmaz meg van advaés A — Y
(Y 1s funkcionalis fiiggés halmaz) akkor ha egy relacion A teljesiil akkor Y is teljesiiljon.

Ezt elég nehéz lesz megcesinalni. Kellenek szabalyok amik véges szamu alkalmazaséaval

Uj helyes fliggdsegeket kapunk.

Armstrong axiomak

3 db szabaly:

e HaY részhalmaza X-nek akkor X — Y (trividlis funkcionalis fiiggdség)

e Ha X — Y-t és Z attributummal kibdvitjiilk mind ketté séméat akkor XZ — YZ
e Ha X > Y ésY — Z akkor tranzitivan X — Z-t.

Tétel: Ha egy szabdly sorozata segitségével le lehet a fiiggést vezetni akkor ezekkel

levezetett fliiggdség mindig helyes lesz. (Igazsag tétel)

Bizonyitas: Meg kell mutatni, hogy mind a 3 axioma magaban igaz. Reflexivitas
helyessége: def. szerint igaz, BOvités helyessége: logikailag megdrzd 1épés, Tranzitivitas
helyessége: implikacié + "ha-akkor" logika alapelve. Ha minden axioma helyes és csak
helyes allitasokat lehet helyesbdl levezetni akkor minden fasza.

Tétel: Ha van egy funkcionalis fliggdség F mellett ami helyes akkor ezt a fliggést le is
lehet vezetni a 3 szaballyal. (Teljességi tétel)

Bizonyitas: Megmutathatd, hogy az Armstrong axiomak az attribitumzaras
eredményhalmazat adjak (ami ugye azokat hasznalja). X legyen az attributum halmaz és
X+ a lezartja. ekkor V'Y € X+-ra igaz, hogy X—Y-t, ahol F fiiggdség mellett az igaz.
Allitas: Minden funkcionalis fiiggdség helyes ami levezethetd és ami helyes az
levezetheto.

Ez nem oldja meg minden problémat,

Pl: Z = T fiigg? Ha T helyes akkor véges 1don beliil megkapjuk. De mi van ha T nem
helyes? Akkor véges 1épésbdl nem jon ki.

Cél: Probaljuk meg a teljes helyes halmazt eldallitani. Ennek a halmaznak az ismeretével

jobban tudunk erre valaszolni.

Definicio: Zart fiiggés halmaz: Teljes, helyes véges halmaz ami F-szabalyokbol

levezethetd fliggések.

Ekkor megmondhatjuk, hogy mi helyes, azaz mi van benne ebbe a halmazba.
Gyakorlatba ez bajos, mert B1 B2... Bn fliggés az A-n 2”n db részhalmaza lesz. Ekkor

exponencialis lesz a feladat.

Definicio: Attributum halmaz lezartja: Teljes, olyan halmaz amire igaz, hogy F (X —

A)-t akkor van benne az A. Akkor ez a halmaz F szerinti lezart.

Ezt a lezartat egy rekurziv algoritmussal lehet kiszamitani. X legyen a halmaz, ekkor
minden iteracioba vesziink be olyan attributumokat amelyek Z-k és Z legyen részhalmaza
Xi-nek (i = tetszéleges X indexe). EsZ > TEFésA€T.

Ez kozel-linearis idoben meg mondja a fiiggéseket, vagyis a halmazt amibdl a fliggéseket
meg lehet allapitani majd.

Példa az algoritmus futarara:

Legyen R(ABCD) és X= AB (Meghatarozzak a séma 0sszes attributumat) X(+) = ?
X(0)=AB

X(I)=AB U {C}

X(2)=ABC U {D}

X(2)=ABCD

Ekkor AB szuperkulcs.

Tranzakciokezelés

Eddig olyan adatbaziskezel6be gondolkoztunk aminek volt 1 usere, 1 CPU-ja és 1
hattértara.

Héat ez nem tul attraktiv, de ez az alap.

De mi van, ha a feladat az, hogy tobb felhasznalot is ki tudjuk szolgalni.

I[lyenkor ezek meriilnek fel:

e Mi van, ha nem elég gyors?

e Mi van, ha nem elég védett?

e Mi van, ha nem elég hatekony?

e Mi van, ha nem elég robosztus? (hibatiird)

Ezekre kiilon-kiilon szép megoldasokat lehet adni.

Pl: Gyorsasagra: parhuzamositas, védettség: elosztott DBMS, redundancia, védett: 4j
security modszerek, robosztus: jobb, finomabb algoritmusok, tobb felhasznalo:

konkurens mukodés.
Konkurens mukodések

Definicio: 7Tranzakcio: Egy program egyszeri végigfutasa ami vagy hibatlanul lefut

vagy semmilyen hatdsa nincs.

Ezek egyidejlileg szoktak futni vagy tobb CPU-val vagy id6osztasos mddszerben.
A probléma ott kezdddik, hogy 1d6 elétt befejezodhetnek + 0sszefésiilodhetnek.

Eléfordulhat, hogy a futtatd szdndékosan ki fogja 16ni a tranzakciot.

A probléménak 4 alapesete van.
Elveszet modositas (Lost update)

IDeﬁnici(): Utemezés: T1,T2...,Tn tranzakcié id6beli akcioit futtatja.

Példa:

P | T2 . i
Lépés i . Megjegyzés
muvelete | mivelete

T1

R(X) = X beolvassa X
=100 értékét
(100)

T2 is

R(X) = X | beolvassa a
=100 regi X
értéket

T1
modositja
magaban az
értéket

X=X+

150

T2is
X=X- L
4 modositja a
3070 | , ., |
régi érteket

T1 kiirja X =
W(X) =

5 - 150-et az
150 , .
adatbazisba

6 W(X) = | T2 felilirja
70 T

frissitését
— **Lost
Update**

Nem megismételheto olvasas (Non repeatable read)

Példa:
T T2 . ,
Lépés . . Megjegyzés
miuvelete | mivelete
T1 elolvassa X
R(X) = i
1 100 eredeti értékét
(100)
5 W(X) = | T2 médositja X
130 értékét 130-ra
T1 ujra olvas —
mas értéket
3 R(X) = cao! (N
130 ap'.(emo
megismételheto
olvasas)

Az olvasasok nem ugyanazt az értéket adjak.

Fantom olvasas (Phantom read)

Példa: T1 Egy adott SELECT-et hajt végre €s egy adott rekordhoz ér hozza.
T2 Ezek utan T2 INSERT-et hajt végre.

Ekkor itt a select ismétléskor mar mast ad vissza.

Hasonl6, mint az el6z0, csak ez nem tetten érhetd mert T2 még nem feltétlentil
fejezodott be.

Piszkos adat olvasasa (Dirty data read)

Példa:

Lépés T T2 Megjegyzés
P muvelete | miivelete diegy
T1 tranzakcid
1 BEGIN _
indul
T1 mddositja
5 W(X) = X-et 200-ra
200 (még NINCS
commit)
3 R(X) =
200
Riszkos
adat
T1
irregularisan
abortal — az
X=200
4 ABORT
SOSEM
szabadott
volna
latszodni
— 12
o A rendszer
hibasan i
] allapota
szamol] .
) , inkonzisztens
tovabb a .
_ — Dirty Read
piszkos o
o anomalia
ertékkel

Definicio: Piszkos adat: Az az adat, amit olyan tranzakciok allitottak eld, amik nem

regularisan terminalodtak.

Minimum elvarasok a DBMS-el

Definicio: ACID: Kovetelmények: Atomicity (Atomisdg: Vagy végigfut a tranzakcid
vagy semmi nem torténik), Consistency (Konzisztencia: Ellentmonddsmentesség olyan
értelemben, hogy ha egyszer a programozo definial tranzakcidkat, akkor a DBMS
biztositsa hogy azok koziil csak a sikeres tranzakcidk eredményeit futtassa), Isolation
(Izolacio: A DBMS-ben fussanak ugy a tranzakciok, hogy ne l4ssék a tobbi tranzakciot),
Durability (Tartossag: Ha a DBMS végrehajtott egy tranzakciot akkor annak az

eredménye ne veszhessen el)
Zarak hasznalata

Definicio: Zdr: Hozzaférési privilégium ami adhat6 és visszavonhato.

Definicio: Egyszerii zar: Ha egy ilyen zarat egy adategységen elhelyeziink, akkor ahhoz
csak egyszerre 1 tranzakci6 fér. Ilyenkor a tobbi varakozik.

Ez a Lost read-et kikiiszoboli.

Példa: 1 LOCK(X) T1 zarolja X-et — mads tranzakci6 nem irhat/olvashat 2 R(X) — 100
T1 beolvassa X eredeti értékét 3 X = X + 50 — 150 T1 elvégzi a moddositast 4 W(X) —
150 T1 kiirja a friss érteket 5 UNLOCK(X) T1 feloldja a zarolast 6 LOCK(X) T2 most
mar lefoglalhatja X-et 7 R(X) — 150 T2 mar a friss értéket olvassa 8 X =X -30 — 120
T2 moddositja az aktualis értéket 9 W(X) — 120 T2 kiirja az értéket 10 UNLOCK(X)
Zarolas felszabadul A lost read nem veszhet el, mert a T2 nem is tud hozzanyulni amig
az adatot T1 lockolta.

Definicio: Varakozas: Ha Tm egy olyan adatot szeretne modositani amit Tn tranzakcid

mar lezart akkor Tm varakozik amig Tn unlock-ol.

Tranzakciokezelés - tobb felhasznalok

Az ACID betartasara vannak algoritmusok, protokollok, de nem

minden algoritmus old meg minden problémat. Van, ami csak 1-et, mas

2-t biztosit.
Zarak problémai

o Ehezés
e Live lock
e Patthelyzet (Deadlock)

Definicio: Legdlis iitemezés: Akkor legalis, ha egy tranzakci6 varakozik akkor ha olyan
adatot akar zarolni, amit egy masik tranzakcid mar zarolt és az 6sszes zarjat
felszabaditja a futasa vége elott.
Ha egy litemezés az sorosithato €s bejon egy ¢l ami miatt mar nem lesz DAG, akkor a T1
varakozasra kényszeriil.
2 Fazist zérolas: Egy 2 f4zist zar protokoljait kovetd protokolt tartd iitemezés (legalis)
sorosithato, ha 2 fazisu.

Definicié: Zdarpont: Egy idOpillanat a 2 fazisu zarprotokol életében ahol mar az dsszes
zart megkapta.

Idében a zarpontokat lehet vizualizalni. Ha ndvekvd sorrendbe rakja az ember a
zarpontokat, akkor kijelenthetd, hogy a zarpontok idében novo sorrendje soros
ekvivalens.

Az Oracle-be 200+ zar is talalhato. Kiilonb6z0 zarak lesznek hatékonyak egy-egy
példara.

IDefinici(’): Read/Write lock: Olvasast vagy irast zar.

Zarmenedzser

Van egy zartablank, ami egy zarmenedzsernek dolgozik, mely egy ilitemezdvel dolgozik

egyutt.

Ilyen sorok vannak a zartablaban: Adategység|Zarak: Z1,72...Zn

Zartabla

Zarmenedzser

Utemezd

Az iitemez6 donti el, hogy egy beérkezd tranzakcidval mi legyen.

Pl: Viarakoztathatja, jovahagyhatja vagy egy masik T-t kilhet a hatdsara.

Zartabla i
Zarmenedzser

Utemezd

Input
temezés

Auto
ternezés

Lehet az, hogy egy tranzakcié mar rég el akarja érni az adatot de ha nincs FIFO akkor

¢hezes lesz.
Holtpontok elleni védekezés

Egy T tranzakci6 lokkoljon le mindent amit hasznélni fog induldsakor.
VAGY

Sorrendet felallitani a tranzakciok kozott.

Definicio: Varakozasi graf: Iranyitott graf, csomopontok tranzakcidk Ti és Tj kozott
akkor lesz eldre €1 ha Ti varakoztatja Tj-t. Ez akkor van, ha Ti mar zérolta azt, ami Tj-
nek kell.

Tétel: Adott pillanatban nincs patt, pontosan akkor ha a varakozasi graf DAG. (Iranyitott
kor mentes).

Bizonyitas: 2 iranyba kell: Nincs patt -> DAG: Tegyiik fel, hogy igaz, akkor nem DAG,
ami hiilyeség. TFH. van iranyitott kor, ekkor a tranzakciok Ti és Tj egymast
varakoztatjak tehat patt van -> nem igaz szdval a tétel igaz. A graf csomdpontjait lehet
topoldgikusan rendezni, akkor az DAG és van egy olyan csomdpont, amiben ¢l nem
mehet, ennek torlésével ujra ilyen pontok lesznek, ezt N-szer ismételve belathatjuk, hogy

nincs patt.

Utemezések jellemzése

Egy iitemezés csak akkor pattmentes ha a varakozasi grafja DAG.
Definicio: Egy iitemezés sorsithato: Ha a tranzakcidok nem tudjak atlapolddéssal

befolyasolni egymast.

De kell egy algoritmus ami a gyakorlatba el tudja donteni, hogy valami sorosithato-e. Mi
van, ha tobb 1000 tranzakcid fut? A graf nagy lesz. Ha sok kozos adatot hasznalnak akkor

sok él lesz.

IDefinici(): Soros ekvivalens: Egy olyan litemez¢si sorrend, ami lefut pattmentesen.

Ekkor sorosithatd egy {itemezés, ha van soros ekvivalense.

Ha nem sorosithato, akkor a végeredmények fiiggenek a sorrendtdl -> RACE

CONDITION
Izolacios elv

Akkor fogadjuk el az litemezés eredményét ha olyan eredményt ad, mint amikor a
tranzakciok ugy futottak le, mint ha egyediil csak azok futottak volna.

Valahogy el kell donteni egy litemezeésrdl, hogy sorosithatdo vagy nem.

Ha egy tlitemezésrdl kidertil, hogy sorosithato, €s mi nem sorosithatoként kezeljiik az
nem akkora hiba, mint forditva.

Ennek megéllapitasara feltételezziink egyszerii tranzakcid modellt:

1 Adategységen csak 1 zar lehet 1 idében.

Definicio: Sorositdsi graf: Pontosan akkor sorsithaté az iitemezésiink ha a sorositasi
grafja (precedencia grafja) az DAG. Ez a graf az, hogy T tranzakciok a node-ok és
eloreélek a fiiggdségek. Ha Ti hasznalta A adatot és elengedte, majd Tj is A-t hasznalja,

akkor Ti->Tj-be egy iranyitott ¢l keriil be.

Ezzel azt akarjuk kifejezni, hogy minden soros ekvivalensben Ti-nek kordbban kell
lefutnia, mint Tj-nek.

Ha egy tranzakcio egy adategységen zarat helyezett el, akkor irhatta €s olvashatta.
Igy viszont Tj akciéi fiigg Ti-tél.

Ekkor BARMELY soros ekvivalensben Ti-nek kell lefutnia. Ezért kell a nyil Ti->Tj.

Minden miiveletkérés utan meg kell nézni, hogy megenged;jiik-e az 0 tranzakcidt.
Minden egyes adatmodositas és zarkérés kozott meg kell nézni a sorosithatosagot.

Egy tranzakcidt abortalni kell, ha kort okoz el6 a sorositasi grafban. Akkor lesznek bajok,
ha egy olyat loviink ki, ami mar adatot irt.

A korok keresése viszont draga, inkébb check helyett kényszeritsiik ki, hogy nem is lehet
nem DAG a graf: A protokollok fognak segiteni.

2 Fazisu zar (2 Phase Lock)

Definicid: 2 Fazisu zar: Egy T tranzakcid zérat elengedni csak azutan lehet, ha a

tranzakcid mar az Osszes zarjat megkapta.

Egyszerti protokol, kiinnyli betartani.
Tétel: A 2 fazist protokolt betartd tranzakcio ha legalisak akkor sorosithatoak.

2 Fazis: Zarak novekedése, egyre tobb zdr, 2.: Az 6sszes zar meg lett kapva, innentdl

csak csOkkennek a zarak.

IDefinici(): Zarpont: Az a pont, amikor a tranzakci6 az 0szes zarat megkapta.

Tétel: Ha zarpontokat egy idoben ndvekvo sorrendje az adott litemezésnek egy soros
ekvivalense lesz.

Tétel: Egy DAG topologikus rendezése mindig soros ekvivalens lesz.
RLOCK-WLOCK model

Definicio: RLOCK: Egy puha, megoszthat6 zar, ebbdl tobb tranzakcid is el tud helyezni
egy adaton tobbet.

Definicio: WLOCK: Egy kemény, nem megoszthato zar, ebbdl egy tranzakcio tud csak
elhelyezni egy adaton.

Miért jo ez? Azért mert ekkor a sorositdsi graf kisebb eséllyel fog iranyitott kort

tartalmazni.

1. Ti vagy egy RLOCK vagy WLOCK utana UNLOCK, ezutan Tj WLOCK. Ekkor Ti-
>Tj.

2. Ti vagy egy WLOCK utana UNLOCK, ezutan Tj RLOCK. Ekkor Ti->Tj.

3. Ti vagy egy RLOCK utdana UNLOCK, ezutan Tj RLOCK. Ekkor teljesen mindegy,
mert read after read van, az adat értékét 1 tranzakcié sem moddositja, nem kell semmilyen

€l

Ekkor az jitemezések nagyobb valdsziniiséggel sorosithatoak.

(Az oracle-ben 200+ zar van)

Az adategységek hierarchikus viszonyban vannak

Ekkor baj van, logikusan ha egy adatot lockolnak, akkor ami al4 tartozik azt is lockolni
kell. (Ez intuicio).
Hierarchikus adategyseégek:

e Hierarchikus adatmodell
e B*fa

e Relacidos adatmodell

Eddig a zar csak 1 adaton van. Ezek az implicit zarak.

Fa protokol

Definicio: Fa protokol: Egyszerii zarakat kovet, melyrdl annyit kell tudni, hogy a T
tranzakci6 az 1. zarjat akarhova elhelyezheti, de tovabbi zarat csak akkor, ha a sziilén

mar van ¢s 1 adategyseéget csak 1-szer zarolhat.

Egyszert feltételek:

Tétel: A fa protokol szabalyait kovetd legalis litemezések sorosithatdak.

Bizonyitas: Fogni kell a sorositasi grafot, topologikusan kell rendezni majd be kell 1atni,

hogy a rendezés ekvivalens a hierarchikus graffal.

Tekintsiik T1 és T2 1. lockjait:

A 1(T1)

B C 1(T2)

Ekkor D-hez csak T1 akkor férhet hozza, ha T2 mar elengedte a sziiljét.
Ekkor T2->T1

Figyelmeztet6 protokol

Egy adott adategységen egy zar az dsszes leszarmozottat is zarolja.

A 1(T1)

D 1(T2)

Itt lathato, hogy D-n implicit zar van, mert T1 zéra fligg T2 zarjatol, ami nem jéo.

Muveletei:

e LOCK A: A gyerekein az adategységnek mar nem lehet se zarat, se warn-t elhelyezni.

e WARN A: Csak Warn-t lehet elhelyezni gyerekeken.

1. Zarmivelet: LOCK Gyokér vagy WARN Gyokér.

2. Ezek utan mar akarmit csak akkor lehet elhelyezni, ha a sziilén van valami.

3. Zarat akkor lehet felszabaditani ha a gyerekeken nincs lock vagy warning.

4. 2-fazisunak kell lennie.

Tétel: A figyelmeztetd protokolt betartd litemezések sorosithatoak és
konfliktusmentesek.

Bizonyitas: TFH van zar konfliktus. Ez 2 okbol lehet, T1 6sére T2 zarat akar elhelyezni.
Ebbdl az kell, hogy az 6sszes koztes csomoponton warn-t kell raknia, de a gyokeret T1

lockolta igy ez lehetetlen. A masodik eset ugyanez csak T2 hamarabb helyezte el a zarat.

Mit lehet kezdeni a tranzakciok ido elotti befejezésével?

Attol fog fliggeni, hogy mi okozza a befejez6dés?:
e User abortion.

e Hiba.

Sorositasi feltétel VAGY patt feloldasa érdekében az iitemezd kilovi.

Rendszerhiba: Csak az operativ tar sériil, hattértar sértetlen.

Média: Csak az hattértar tar sériil, operativ sértetlen.

Médiahiba

Ezzel nem sokat tudunk csinalni. A diszkek tobbszorositését lehet csinalni.

Tranzakciohiba

Ez er0s sorositasi feltételek mellett megsziinik.

Definicio: Commit pont: Az az idépont amikor a tranzakcié minden zarjat megkapta és

minden miiveletét elvégezte. Ekkor mar nem szakadhat meg definicid szerint.

Ez miért fontos? Azért, mert a vannak ABORT problémak: Dirty read.
A piszkos adat nagyon karos, mert kaszkadositva is el6fordulhat és T3 T2-n keresztiil

olvassa T1 piszkos adatat.

Szamos sok tranzakciot kell torolni ennek a hatasara.

Definicid: Lavina hatas: Rengeteg egymasra €piild mar lefutott tranzakcio torléseét

jelenti. Ez performance heavy.

Lavinédk eléfordulédsa keriilendd: Ne olvassunk COMMIT el6tt és ne irjanak a
tranzakcidk a COMMIT elétt.

A lavindkat iteraltan is fel lehet szamolni. Ez nem annyira jé, de ezt is lehet csinalni.

Definicio: Szigoru protokol: Ha egy protokol teljesiti azt, hogy az adatbazisba nem ir a

tranzakcié a commit elétt akkor szigorinak nevezzik.

Definiciod: Szigoru 2 fazisu protokol: Az 6sszes lock a commit pont eldtt van, utana irds
van a db-be ¢€s utana felszabaditjuk a zarakat. Szigoru, mert teljesiil, hogy commit utan

irunk.

Tétel: Szigorti 2PL sorosithat6 és lavinamentes.
Bizonyitas: Szigori->Elégséges a piszkos adat sziirésére -> Lavina elkertiilésére, 2
Fézist -> Sorosithato.

Fontos a késleltetés minimalizalasa ¢és a tranzakcios teljesitmény maximalizalasa.

IDefinici(): Tranzakcios teljesitmény: A sikeres tranzakcidk lefutdsara forditott 1d6.

Ezek okoznak veszteséget:

e A zarak kezelése csokkenti a tranzakcids teljesitményt.

* A tranzakci6 abortalas is csokkenti a futasi teljesitményt.
o Kovetkezményes / Lavina felszdmolasa.

Definicid: Konzervativ protokol: Ha sok 1d6t fordit a tranzakcios lefutdsanak

optimalizaldsara.

Definicié: Agressziv protokol: Ha sok 1d6t fordit a késleltetés optimalizalasara.

P1: Nagyon konzervativ protokol, ha a futas elején az 6sszes zarat elkér egy tranzakcio.

Ha sziiksége van egy zart adatra akkor varakozasi sorba keriil. Lehet ez egy 2 fazist PL

1S.

Ekkor ez pattmentes, €¢hezésmentes, sorosithato, szigori. Sok energia a betartasra de

futasi teljesitményt nem veszitiink.

Pl: Aggressziv protokol lehet az, hogy a legrovidebb idore kéri el a zarat.
Rendszerhibak kezelése

Az ilyen hibék ellen naplozassal védekeziink.
A tranzakciokat kell napldzni, €s ezeknek a miiveleteit.

Egy naplé rekordot a miivelet végrehajtasa elott kell rogziteni.

Definicid: Naplo rekord: Benne van: A tranzakcio mit csinalt milyen adaton és mikor

csinalta és mi lett az 0j érték. Ezen feliil a tranzakcié azonosito is benne lehet.

A naplo is blokkokbdl all, ami elsddlegesen az operativ tarba irodik, majd ha megtellik,
akkor a hattértarba irodik.
Ennek hasznalata hatékonysagnovekedést is jelent.

(Amit ki lehet olvasni az adatbazisbol, azt a napldbol is lehet olvasni)

Definicio: Redo protokol: Szigori 2PL + naplozés. Ha egy szigoru protokol, akkor nem
lehetnek lavinak igy nem kell UNDO-zni, csak REDO-zni.

Definicio: /dobélyeg: Megkapja egy adat azt, hogy egy tranzakcid mikor olvasta
utoljara. (Missed Read /Write baj lesz). Ha iddbélyek szerint sorba allitjuk a

tranzakciokat, akkor egy szabalyos soros ekvivalenst kapunk. Csak ehhez hasonld

litemezések a helyesek.

Példa: Idobélyegre, R(A) és W(A) read €s write iddbélyeg jelzes.

e Ha a tranzakciok mar irtak / olvastak akkor ezek utan irhato egy tranzakcid €s

olvashato is.

e Ha a multban akarjuk irni de mar olvastak a jovoben akkor nem szabad engedélyezni a
miiveletet. Abortalni kell a tranzakciot. Ha irni akar akkor is. (Ha késobbi olvasas
1ddbélyege van rajta akkor nem resetelhetjiik hamarabbi 1ddbélyegre)

e Ha idOben vissza akarunk irni valamit amit mar olvastunk (nagyobb az olvasasi

1dobélyeg) akkor abortalni kell a tranzakciot. Ha olvasni akar akkor engedhet;iik.

Mit lehet a lavinak ellen tenni?

Szigoru protokollokkal!

De a tranzakcid 1d6bélyeg tesztelésének atominak kell lennie kiilonben anomalidk
fordulnak eld!

Egy tranzakcidé commint point-ja eldtt lesz az idobélyeg vizsgalata €s utana az irasa lesz.
DE ekkor lehet mas miivelet a 2 muavelet kozott, ami ellentmondas.

Ezt Gigy tudjuk orvosolni, hogy zarakat helyeziink el az id6bélyegre.
Verziokezeléses idobélyegek (MVCC)

Egy adat elem értékébdl amikor irjuk akkor 0 verziot hozunk 1étre, hogy a régi readek a
régi értékkel dolgozhassanak.

Ha a tranzakcio egy késdbbi olvasas/ir idobélyeget lat akkor baj van, de ha minden mult
beli elem 1étezik a jo idobélyegekkel akkor semmi baj nincs. Ekkor nem kell semmit sem
csinalni csak el kell venni a régi elem régi verziojat a megfeleld idobélyeggel.

Ez nem azt jelenti, hogy minden abort-tol megkimélhetjiik az adatbazist,

pl: az 1d¢6 eldtti irds majd utdna mar olvasast nem tudjuk engedélyezni.

